File size: 6,627 Bytes
e547b24
 
 
 
 
 
 
 
 
7c0ea6c
 
e547b24
4a22dd6
e547b24
 
 
 
119e558
 
 
e547b24
 
 
 
9be63af
e547b24
 
119e558
e547b24
6f5a32e
e547b24
119e558
e547b24
6f5a32e
e547b24
119e558
e547b24
 
 
 
 
 
119e558
 
 
 
 
e547b24
 
119e558
e547b24
 
6f5a32e
 
e547b24
 
 
 
 
119e558
e547b24
 
6f5a32e
e547b24
 
6f5a32e
e547b24
 
119e558
e547b24
02f8cfa
119e558
02f8cfa
 
92f9c14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3573a
92f9c14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f7edc
e547b24
 
119e558
7c0ea6c
92f9c14
 
 
 
 
119e558
 
02f8cfa
119e558
02f8cfa
 
 
92f9c14
119e558
 
02f8cfa
92f9c14
fb3573a
119e558
92f9c14
fb3573a
92f9c14
 
 
 
 
e547b24
119e558
02f8cfa
92f9c14
119e558
 
02f8cfa
92f9c14
e547b24
119e558
 
e547b24
119e558
92f9c14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json
from themes import IndonesiaTheme  # Import custom IndonesiaTheme

# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # Translate the prompt from Russian to English if necessary
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    # Add some extra flair to the prompt
    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    # Send the request to the API and handle the response
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        # Convert the response content into an image
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

# CSS to style the app
css = """
#app-container {
    max-width: 800px;
    margin-left: auto;
    margin-right: auto;
    padding: 20px;
    background-color: #2b2b2b;
    border-radius: 15px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.4);
}

h1 {
    font-size: 2.5rem;
    text-align: center;
    color: #ffa500;
    margin-bottom: 10px;
    font-weight: bold;
    text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

.description {
    text-align: center;
    font-size: 1.2rem;
    color: black;
    margin-bottom: 20px;
    font-style: italic;
}

#gen-button {
    background-color: #ff9800;
    color: white;
    font-weight: bold;
    border-radius: 10px;
    padding: 15px;
    transition: background-color 0.3s ease;
}

#gen-button:hover {
    background-color: #e67e22;
    transform: scale(1.05);
}

#gallery {
    border: 2px solid #ff9800;
    border-radius: 15px;
}

#prompt-text-input, #negative-prompt-text-input {
    background-color: #444444;
    color: white;
    border-radius: 8px;
    border: 1px solid #ffa500;
}

label {
    color: #ffffff;
}
"""

# Build the Gradio UI with Blocks
with gr.Blocks(theme=IndonesiaTheme(), css=css) as app:
    # Add a title to the app with an emoji and large header
    gr.HTML("<h1>πŸ”₯ Unlimited FLUX Schnell - V1.3 πŸ”₯</h1>")
    
    # Description below the title in Indonesian
    gr.HTML("<p class='description'>πŸš€ Generator gambar AI berkualitas tinggi dengan kontrol penuh atas detail dan opsi lanjutan. Buat karya seni spektakuler dengan mudah! 🎨</p>")
    
    # Container for all the UI elements
    with gr.Column(elem_id="app-container"):
        # Add a text input for the main prompt
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="🎨 Prompt", placeholder="Masukkan deskripsi gambar di sini", lines=2, elem_id="prompt-text-input")
                
                # Accordion for advanced settings
                with gr.Row():
                    with gr.Accordion("βš™οΈ Pengaturan Lanjutan", open=False):
                        negative_prompt = gr.Textbox(label="❌ Prompt Negatif", placeholder="Elemen yang tidak diinginkan dalam gambar", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        with gr.Row():
                            width = gr.Slider(label="Lebar", value=1024, minimum=64, maximum=1216, step=32)
                            height = gr.Slider(label="Tinggi", value=768, minimum=64, maximum=1216, step=32)
                        steps = gr.Slider(label="Langkah Sampling", value=4, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="Skala CFG", value=7, minimum=1, maximum=20, step=1)
                        strength = gr.Slider(label="Kekuatan", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)  # -1 for random
                        method = gr.Radio(label="Metode Sampling", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

        # Add a button to trigger the image generation
        with gr.Row():
            text_button = gr.Button("πŸš€ Buat Gambar", variant='primary', elem_id="gen-button")
        
        # Image output area to display the generated image
        with gr.Row():
            image_output = gr.Image(type="pil", label="Hasil Gambar", elem_id="gallery")
        
        # Bind the button to the query function with the added width and height inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)

# Launch the Gradio app
app.launch(show_api=False, share=False)