Spaces:
Running
Running
File size: 9,625 Bytes
4f6613a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import base64
import ctypes
import io
import json
import os
import struct
from dataclasses import dataclass
from enum import Enum
from typing import AsyncGenerator, Union
import httpx
import numpy as np
import ormsgpack
import soundfile as sf
from .schema import (
ServeMessage,
ServeRequest,
ServeTextPart,
ServeVQGANDecodeRequest,
ServeVQGANEncodeRequest,
ServeVQPart,
)
class CustomAudioFrame:
def __init__(self, data, sample_rate, num_channels, samples_per_channel):
if len(data) < num_channels * samples_per_channel * ctypes.sizeof(
ctypes.c_int16
):
raise ValueError(
"data length must be >= num_channels * samples_per_channel * sizeof(int16)"
)
self._data = bytearray(data)
self._sample_rate = sample_rate
self._num_channels = num_channels
self._samples_per_channel = samples_per_channel
@property
def data(self):
return memoryview(self._data).cast("h")
@property
def sample_rate(self):
return self._sample_rate
@property
def num_channels(self):
return self._num_channels
@property
def samples_per_channel(self):
return self._samples_per_channel
@property
def duration(self):
return self.samples_per_channel / self.sample_rate
def __repr__(self):
return (
f"CustomAudioFrame(sample_rate={self.sample_rate}, "
f"num_channels={self.num_channels}, "
f"samples_per_channel={self.samples_per_channel}, "
f"duration={self.duration:.3f})"
)
class FishE2EEventType(Enum):
SPEECH_SEGMENT = 1
TEXT_SEGMENT = 2
END_OF_TEXT = 3
END_OF_SPEECH = 4
ASR_RESULT = 5
USER_CODES = 6
@dataclass
class FishE2EEvent:
type: FishE2EEventType
frame: np.ndarray = None
text: str = None
vq_codes: list[list[int]] = None
client = httpx.AsyncClient(
timeout=None,
limits=httpx.Limits(
max_connections=None,
max_keepalive_connections=None,
keepalive_expiry=None,
),
)
class FishE2EAgent:
def __init__(self):
self.llm_url = "http://localhost:8080/v1/chat"
self.vqgan_url = "http://localhost:8080"
self.client = httpx.AsyncClient(timeout=None)
async def get_codes(self, audio_data, sample_rate):
audio_buffer = io.BytesIO()
sf.write(audio_buffer, audio_data, sample_rate, format="WAV")
audio_buffer.seek(0)
# Step 1: Encode audio using VQGAN
encode_request = ServeVQGANEncodeRequest(audios=[audio_buffer.read()])
encode_request_bytes = ormsgpack.packb(
encode_request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC
)
encode_response = await self.client.post(
f"{self.vqgan_url}/v1/vqgan/encode",
data=encode_request_bytes,
headers={"Content-Type": "application/msgpack"},
)
encode_response_data = ormsgpack.unpackb(encode_response.content)
codes = encode_response_data["tokens"][0]
return codes
async def stream(
self,
system_audio_data: np.ndarray | None,
user_audio_data: np.ndarray | None,
sample_rate: int,
num_channels: int,
chat_ctx: dict | None = None,
) -> AsyncGenerator[bytes, None]:
if system_audio_data is not None:
sys_codes = await self.get_codes(system_audio_data, sample_rate)
else:
sys_codes = None
if user_audio_data is not None:
user_codes = await self.get_codes(user_audio_data, sample_rate)
# Step 2: Prepare LLM request
if chat_ctx is None:
sys_parts = [
ServeTextPart(
text='您是由 Fish Audio 设计的语音助手,提供端到端的语音交互,实现无缝用户体验。首先转录用户的语音,然后使用以下格式回答:"Question: [用户语音]\n\nAnswer: [你的回答]\n"。'
),
]
if system_audio_data is not None:
sys_parts.append(ServeVQPart(codes=sys_codes))
chat_ctx = {
"messages": [
ServeMessage(
role="system",
parts=sys_parts,
),
],
}
else:
if chat_ctx["added_sysaudio"] is False and sys_codes:
chat_ctx["added_sysaudio"] = True
chat_ctx["messages"][0].parts.append(ServeVQPart(codes=sys_codes))
prev_messages = chat_ctx["messages"].copy()
if user_audio_data is not None:
yield FishE2EEvent(
type=FishE2EEventType.USER_CODES,
vq_codes=user_codes,
)
else:
user_codes = None
request = ServeRequest(
messages=prev_messages
+ (
[
ServeMessage(
role="user",
parts=[ServeVQPart(codes=user_codes)],
)
]
if user_codes
else []
),
streaming=True,
num_samples=1,
)
# Step 3: Stream LLM response and decode audio
buffer = b""
vq_codes = []
current_vq = False
async def decode_send():
nonlocal current_vq
nonlocal vq_codes
data = np.concatenate(vq_codes, axis=1).tolist()
# Decode VQ codes to audio
decode_request = ServeVQGANDecodeRequest(tokens=[data])
decode_response = await self.client.post(
f"{self.vqgan_url}/v1/vqgan/decode",
data=ormsgpack.packb(
decode_request,
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
),
headers={"Content-Type": "application/msgpack"},
)
decode_data = ormsgpack.unpackb(decode_response.content)
# Convert float16 audio data to int16
audio_data = np.frombuffer(decode_data["audios"][0], dtype=np.float16)
audio_data = (audio_data * 32768).astype(np.int16).tobytes()
audio_frame = CustomAudioFrame(
data=audio_data,
samples_per_channel=len(audio_data) // 2,
sample_rate=44100,
num_channels=1,
)
yield FishE2EEvent(
type=FishE2EEventType.SPEECH_SEGMENT,
frame=audio_frame,
vq_codes=data,
)
current_vq = False
vq_codes = []
async with self.client.stream(
"POST",
self.llm_url,
data=ormsgpack.packb(request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC),
headers={"Content-Type": "application/msgpack"},
) as response:
async for chunk in response.aiter_bytes():
buffer += chunk
while len(buffer) >= 4:
read_length = struct.unpack("I", buffer[:4])[0]
if len(buffer) < 4 + read_length:
break
body = buffer[4 : 4 + read_length]
buffer = buffer[4 + read_length :]
data = ormsgpack.unpackb(body)
if data["delta"] and data["delta"]["part"]:
if current_vq and data["delta"]["part"]["type"] == "text":
async for event in decode_send():
yield event
if data["delta"]["part"]["type"] == "text":
yield FishE2EEvent(
type=FishE2EEventType.TEXT_SEGMENT,
text=data["delta"]["part"]["text"],
)
elif data["delta"]["part"]["type"] == "vq":
vq_codes.append(np.array(data["delta"]["part"]["codes"]))
current_vq = True
if current_vq and vq_codes:
async for event in decode_send():
yield event
yield FishE2EEvent(type=FishE2EEventType.END_OF_TEXT)
yield FishE2EEvent(type=FishE2EEventType.END_OF_SPEECH)
# Example usage:
async def main():
import torchaudio
agent = FishE2EAgent()
# Replace this with actual audio data loading
with open("uz_story_en.m4a", "rb") as f:
audio_data = f.read()
audio_data, sample_rate = torchaudio.load("uz_story_en.m4a")
audio_data = (audio_data.numpy() * 32768).astype(np.int16)
stream = agent.stream(audio_data, sample_rate, 1)
if os.path.exists("audio_segment.wav"):
os.remove("audio_segment.wav")
async for event in stream:
if event.type == FishE2EEventType.SPEECH_SEGMENT:
# Handle speech segment (e.g., play audio or save to file)
with open("audio_segment.wav", "ab+") as f:
f.write(event.frame.data)
elif event.type == FishE2EEventType.ASR_RESULT:
print(event.text, flush=True)
elif event.type == FishE2EEventType.TEXT_SEGMENT:
print(event.text, flush=True, end="")
elif event.type == FishE2EEventType.END_OF_TEXT:
print("\nEnd of text reached.")
elif event.type == FishE2EEventType.END_OF_SPEECH:
print("End of speech reached.")
if __name__ == "__main__":
import asyncio
asyncio.run(main())
|