File size: 3,704 Bytes
988597d af1e780 e498f21 af1e780 e498f21 af1e780 660a9f4 988597d 199e195 988597d 1bf2991 988597d f8b05f3 988597d af1e780 988597d 199e195 988597d af1e780 988597d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import time
models =[
"enhanceaiteam/Flux-uncensored",
"adirik/flux-cinestill",
"kudzueye/boreal-flux-dev-v2",
"alvdansen/flux_film_foto",
"alvdansen/pola-photo-flux",
"black-forest-labs/FLUX.1-dev",
"XLabs-AI/flux-RealismLora",
"Freepik/flux.1-lite-8B-alpha",
]
model_functions = {}
model_idx = 1
for model_path in models:
try:
model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False)
except Exception as error:
def the_fn(txt):
return None
model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"])
model_idx+=1
def send_it_idx(idx):
def send_it_fn(prompt):
output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt)
return output
return send_it_fn
def get_prompts(prompt_text):
return prompt_text
def clear_it(val):
if int(val) != 0:
val = 0
else:
val = 0
pass
return val
def all_task_end(cnt,t_stamp):
to = t_stamp + 360
et = time.time()
if et > to and t_stamp != 0:
d = gr.update(value=0)
tog = gr.update(value=1)
else:
if cnt != 0:
d = gr.update(value=et)
else:
d = gr.update(value=0)
tog = gr.update(value=0)
pass
return d, tog
def all_task_start():
print("\n\n\n\n\n\n\n")
t = time.gmtime()
t_stamp = time.time()
current_time = time.strftime("%H:%M:%S", t)
return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0)
def clear_fn():
nn = len(models)
return tuple([None, *[None for _ in range(nn)]])
with gr.Blocks(title="SD Models") as my_interface:
with gr.Column(scale=12):
with gr.Row():
with gr.Row(scale=6):
primary_prompt=gr.Textbox(label="Prompt", value="")
with gr.Row(scale=6):
with gr.Row():
run=gr.Button("Run",variant="primary")
clear_btn=gr.Button("Clear")
with gr.Row():
sd_outputs = {}
model_idx = 1
for model_path in models:
with gr.Column(scale=3, min_width=200):
with gr.Box():
sd_outputs[model_idx] = gr.Image(label=model_path)
pass
model_idx += 1
pass
pass
with gr.Row(visible=False):
start_box=gr.Number(interactive=False)
end_box=gr.Number(interactive=False)
tog_box=gr.Textbox(value=0,interactive=False)
start_box.change(
all_task_end,
[start_box, end_box],
[start_box, tog_box],
every=1,
show_progress=True)
primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box])
run.click(all_task_start, None, [start_box, end_box, tog_box])
runs_dict = {}
model_idx = 1
for model_path in models:
runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]])
model_idx += 1
pass
pass
clear_btn.click(
clear_fn,
None,
[primary_prompt, *list(sd_outputs.values())],
cancels=[*list(runs_dict.values())])
tog_box.change(
clear_it,
tog_box,
tog_box,
cancels=[*list(runs_dict.values())])
my_interface.queue(concurrency_count=100, status_update_rate=1)
my_interface.launch(inline=True, show_api=False)
|