Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import gradio as gr | |
import time | |
import spaces | |
import timm | |
from torchvision.ops import nms, box_iou | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
from dog_database import get_dog_description | |
from scoring_calculation_system import UserPreferences | |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations | |
from history_manager import UserHistoryManager | |
from search_history import create_history_tab, create_history_component | |
from styles import get_css_styles | |
from breed_detection import create_detection_tab | |
from breed_comparison import create_comparison_tab | |
from breed_recommendation import create_recommendation_tab | |
from html_templates import ( | |
format_description_html, | |
format_single_dog_result, | |
format_multiple_breeds_result, | |
format_unknown_breed_message, | |
format_not_dog_message, | |
format_hint_html, | |
format_multi_dog_container, | |
format_breed_details_html, | |
get_color_scheme, | |
get_akc_breeds_link | |
) | |
from model_architecture import BaseModel, dog_breeds | |
from urllib.parse import quote | |
from ultralytics import YOLO | |
import asyncio | |
import traceback | |
history_manager = UserHistoryManager() | |
class ModelManager: | |
""" | |
Singleton class for managing model instances and device allocation | |
specifically designed for Hugging Face Spaces deployment. | |
""" | |
_instance = None | |
_initialized = False | |
_yolo_model = None | |
_breed_model = None | |
_device = None | |
def __new__(cls): | |
if cls._instance is None: | |
cls._instance = super().__new__(cls) | |
return cls._instance | |
def __init__(self): | |
if not ModelManager._initialized: | |
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
ModelManager._initialized = True | |
def device(self): | |
if self._device is None: | |
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
return self._device | |
def yolo_model(self): | |
if self._yolo_model is None: | |
self._yolo_model = YOLO('yolov8x.pt') | |
return self._yolo_model | |
def breed_model(self): | |
if self._breed_model is None: | |
self._breed_model = BaseModel( | |
num_classes=len(dog_breeds), | |
device=self.device | |
).to(self.device) | |
checkpoint = torch.load( | |
'ConvNextV2Base_best_model.pth', | |
map_location=self.device | |
) | |
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False) | |
self._breed_model.eval() | |
return self._breed_model | |
# Initialize model manager | |
model_manager = ModelManager() | |
def preprocess_image(image): | |
"""Preprocesses images for model input""" | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
return transform(image).unsqueeze(0) | |
def predict_single_dog(image): | |
"""Predicts dog breed for a single image""" | |
image_tensor = preprocess_image(image).to(model_manager.device) | |
with torch.no_grad(): | |
logits = model_manager.breed_model(image_tensor)[0] | |
probs = F.softmax(logits, dim=1) | |
top5_prob, top5_idx = torch.topk(probs, k=5) | |
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]] | |
probabilities = [prob.item() for prob in top5_prob[0]] | |
sum_probs = sum(probabilities[:3]) | |
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]] | |
return probabilities[0], breeds[:3], relative_probs | |
def enhanced_preprocess(image, is_standing=False, has_overlap=False): | |
""" | |
Enhanced image preprocessing function with special handling for different poses | |
and overlapping cases. | |
""" | |
target_size = 224 | |
w, h = image.size | |
if is_standing: | |
if h > w * 1.5: | |
new_h = target_size | |
new_w = min(target_size, int(w * (target_size / h))) | |
new_w = max(new_w, int(target_size * 0.6)) | |
elif has_overlap: | |
scale = min(target_size/w, target_size/h) * 0.95 | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
else: | |
scale = min(target_size/w, target_size/h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS) | |
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240)) | |
paste_x = (target_size - new_w) // 2 | |
paste_y = (target_size - new_h) // 2 | |
final_image.paste(resized, (paste_x, paste_y)) | |
return final_image | |
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3): | |
""" | |
Enhanced multiple dog detection with improved bounding box handling and | |
intelligent boundary adjustments. | |
""" | |
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0] | |
img_width, img_height = image.size | |
detected_boxes = [] | |
# Phase 1: Initial detection and processing | |
for box in results.boxes: | |
if box.cls.item() == 16: # Dog class | |
xyxy = box.xyxy[0].tolist() | |
confidence = box.conf.item() | |
x1, y1, x2, y2 = map(int, xyxy) | |
w = x2 - x1 | |
h = y2 - y1 | |
detected_boxes.append({ | |
'coords': [x1, y1, x2, y2], | |
'width': w, | |
'height': h, | |
'center_x': (x1 + x2) / 2, | |
'center_y': (y1 + y2) / 2, | |
'area': w * h, | |
'confidence': confidence, | |
'aspect_ratio': w / h if h != 0 else 1 | |
}) | |
if not detected_boxes: | |
return [(image, 1.0, [0, 0, img_width, img_height], False)] | |
# Phase 2: Analysis of detection relationships | |
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes) | |
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes) | |
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes) | |
def calculate_iou(box1, box2): | |
x1 = max(box1['coords'][0], box2['coords'][0]) | |
y1 = max(box1['coords'][1], box2['coords'][1]) | |
x2 = min(box1['coords'][2], box2['coords'][2]) | |
y2 = min(box1['coords'][3], box2['coords'][3]) | |
if x2 <= x1 or y2 <= y1: | |
return 0.0 | |
intersection = (x2 - x1) * (y2 - y1) | |
area1 = box1['area'] | |
area2 = box2['area'] | |
return intersection / (area1 + area2 - intersection) | |
# Phase 3: Processing each detection | |
processed_boxes = [] | |
overlap_threshold = 0.2 | |
for i, box_info in enumerate(detected_boxes): | |
x1, y1, x2, y2 = box_info['coords'] | |
w = box_info['width'] | |
h = box_info['height'] | |
center_x = box_info['center_x'] | |
center_y = box_info['center_y'] | |
# Check for overlaps | |
has_overlap = False | |
for j, other_box in enumerate(detected_boxes): | |
if i != j and calculate_iou(box_info, other_box) > overlap_threshold: | |
has_overlap = True | |
break | |
# Adjust expansion strategy | |
base_expansion = 0.03 | |
max_expansion = 0.05 | |
is_standing = h > 1.5 * w | |
is_sitting = 0.8 <= h/w <= 1.2 | |
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5) | |
if has_overlap: | |
h_expansion = w_expansion = base_expansion * 0.8 | |
else: | |
if is_standing: | |
h_expansion = min(base_expansion * 1.2, max_expansion) | |
w_expansion = base_expansion | |
elif is_sitting: | |
h_expansion = w_expansion = base_expansion | |
else: | |
h_expansion = w_expansion = base_expansion * 0.9 | |
# Position compensation | |
if center_x < img_width * 0.2 or center_x > img_width * 0.8: | |
w_expansion *= 0.9 | |
if is_abnormal_size: | |
h_expansion *= 0.8 | |
w_expansion *= 0.8 | |
# Calculate final bounding box | |
expansion_w = w * w_expansion | |
expansion_h = h * h_expansion | |
new_x1 = max(0, center_x - (w + expansion_w)/2) | |
new_y1 = max(0, center_y - (h + expansion_h)/2) | |
new_x2 = min(img_width, center_x + (w + expansion_w)/2) | |
new_y2 = min(img_height, center_y + (h + expansion_h)/2) | |
# Crop and process image | |
cropped_image = image.crop((int(new_x1), int(new_y1), | |
int(new_x2), int(new_y2))) | |
processed_image = enhanced_preprocess( | |
cropped_image, | |
is_standing=is_standing, | |
has_overlap=has_overlap | |
) | |
processed_boxes.append(( | |
processed_image, | |
box_info['confidence'], | |
[new_x1, new_y1, new_x2, new_y2], | |
True | |
)) | |
return processed_boxes | |
def predict(image): | |
""" | |
Main prediction function that handles both single and multiple dog detection. | |
Args: | |
image: PIL Image or numpy array | |
Returns: | |
tuple: (html_output, annotated_image, initial_state) | |
""" | |
if image is None: | |
return format_hint_html("Please upload an image to start."), None, None | |
try: | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# 檢測圖片中的物體 | |
dogs = detect_multiple_dogs(image) | |
color_scheme = get_color_scheme(len(dogs) == 1) | |
# 準備標註 | |
annotated_image = image.copy() | |
draw = ImageDraw.Draw(annotated_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", 24) | |
except: | |
font = ImageFont.load_default() | |
dogs_info = "" | |
# 處理每個檢測到的物體 | |
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs): | |
print(f"Predict processing - Object {i+1}:") | |
print(f" Is dog: {is_dog}") | |
print(f" Detection confidence: {detection_confidence:.4f}") | |
# 如果是狗且進行品種預測,在這裡也加入打印語句 | |
if is_dog: | |
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) | |
print(f" Breed prediction - Top probability: {top1_prob:.4f}") | |
print(f" Top breeds: {topk_breeds[:3]}") | |
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)] | |
# 繪製框和標籤 | |
draw.rectangle(box, outline=color, width=4) | |
label = f"Dog {i+1}" if is_dog else f"Object {i+1}" | |
label_bbox = draw.textbbox((0, 0), label, font=font) | |
label_width = label_bbox[2] - label_bbox[0] | |
label_height = label_bbox[3] - label_bbox[1] | |
# 繪製標籤背景和文字 | |
label_x = box[0] + 5 | |
label_y = box[1] + 5 | |
draw.rectangle( | |
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4], | |
fill='white', | |
outline=color, | |
width=2 | |
) | |
draw.text((label_x, label_y), label, fill=color, font=font) | |
try: | |
# 首先檢查是否為狗 | |
if not is_dog: | |
dogs_info += format_not_dog_message(color, i+1) | |
continue | |
# 如果是狗,進行品種預測 | |
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image) | |
combined_confidence = detection_confidence * top1_prob | |
# 根據信心度決定輸出格式 | |
if combined_confidence < 0.15: | |
dogs_info += format_unknown_breed_message(color, i+1) | |
elif top1_prob >= 0.4: | |
breed = topk_breeds[0] | |
description = get_dog_description(breed) | |
if description is None: | |
description = { | |
"Name": breed, | |
"Size": "Unknown", | |
"Exercise Needs": "Unknown", | |
"Grooming Needs": "Unknown", | |
"Care Level": "Unknown", | |
"Good with Children": "Unknown", | |
"Description": f"Identified as {breed.replace('_', ' ')}" | |
} | |
dogs_info += format_single_dog_result(breed, description, color) | |
else: | |
dogs_info += format_multiple_breeds_result( | |
topk_breeds, | |
relative_probs, | |
color, | |
i+1, | |
lambda breed: get_dog_description(breed) or { | |
"Name": breed, | |
"Size": "Unknown", | |
"Exercise Needs": "Unknown", | |
"Grooming Needs": "Unknown", | |
"Care Level": "Unknown", | |
"Good with Children": "Unknown", | |
"Description": f"Identified as {breed.replace('_', ' ')}" | |
} | |
) | |
except Exception as e: | |
print(f"Error formatting results for dog {i+1}: {str(e)}") | |
dogs_info += format_unknown_breed_message(color, i+1) | |
# 包裝最終的HTML輸出 | |
html_output = format_multi_dog_container(dogs_info) | |
# 準備初始狀態 | |
initial_state = { | |
"dogs_info": dogs_info, | |
"image": annotated_image, | |
"is_multi_dog": len(dogs) > 1, | |
"html_output": html_output | |
} | |
return html_output, annotated_image, initial_state | |
except Exception as e: | |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
print(error_msg) | |
return format_hint_html(error_msg), None, None | |
def show_details_html(choice, previous_output, initial_state): | |
""" | |
Generate detailed HTML view for a selected breed. | |
Args: | |
choice: str, Selected breed option | |
previous_output: str, Previous HTML output | |
initial_state: dict, Current state information | |
Returns: | |
tuple: (html_output, gradio_update, updated_state) | |
""" | |
if not choice: | |
return previous_output, gr.update(visible=True), initial_state | |
try: | |
breed = choice.split("More about ")[-1] | |
description = get_dog_description(breed) | |
html_output = format_breed_details_html(description, breed) | |
# Update state | |
initial_state["current_description"] = html_output | |
initial_state["original_buttons"] = initial_state.get("buttons", []) | |
return html_output, gr.update(visible=True), initial_state | |
except Exception as e: | |
error_msg = f"An error occurred while showing details: {e}" | |
print(error_msg) | |
return format_hint_html(error_msg), gr.update(visible=True), initial_state | |
def main(): | |
with gr.Blocks(css=get_css_styles()) as iface: | |
# Header HTML | |
gr.HTML(""" | |
<head> | |
<link rel="manifest" href="manifest.json"> | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<meta name="theme-color" content="#4299e1"> | |
<link rel="apple-touch-icon" href="assets/icon-192.png"> | |
</head> | |
<script> | |
if ('serviceWorker' in navigator) { | |
window.addEventListener('load', () => { | |
navigator.serviceWorker.register('/service-worker.js'); | |
}); | |
} | |
</script> | |
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'> | |
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'> | |
🐾 PawMatch AI | |
</h1> | |
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'> | |
Your Smart Dog Breed Guide | |
</h2> | |
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div> | |
<p style='color: #718096; font-size: 0.9em;'> | |
Powered by AI • Breed Recognition • Smart Matching • Companion Guide | |
</p> | |
</header> | |
""") | |
# 先創建歷史組件實例(但不創建標籤頁) | |
history_component = create_history_component() | |
with gr.Tabs(): | |
# 1. 品種檢測標籤頁 | |
example_images = [ | |
'Border_Collie.jpg', | |
'Golden_Retriever.jpeg', | |
'Saint_Bernard.jpeg', | |
'Samoyed.jpeg', | |
'French_Bulldog.jpeg' | |
] | |
detection_components = create_detection_tab(predict, example_images) | |
# 2. 品種比較標籤頁 | |
comparison_components = create_comparison_tab( | |
dog_breeds=dog_breeds, | |
get_dog_description=get_dog_description, | |
breed_health_info=breed_health_info, | |
breed_noise_info=breed_noise_info | |
) | |
# 3. 品種推薦標籤頁 | |
recommendation_components = create_recommendation_tab( | |
UserPreferences=UserPreferences, | |
get_breed_recommendations=get_breed_recommendations, | |
format_recommendation_html=format_recommendation_html, | |
history_component=history_component | |
) | |
# 4. 最後創建歷史記錄標籤頁 | |
create_history_tab(history_component) | |
# Footer | |
gr.HTML(''' | |
<div style=" | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
gap: 20px; | |
padding: 20px 0; | |
"> | |
<p style=" | |
font-family: 'Arial', sans-serif; | |
font-size: 14px; | |
font-weight: 500; | |
letter-spacing: 2px; | |
background: linear-gradient(90deg, #555, #007ACC); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
margin: 0; | |
text-transform: uppercase; | |
display: inline-block; | |
">EXPLORE THE CODE →</p> | |
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;"> | |
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge"> | |
</a> | |
</div> | |
''') | |
return iface | |
if __name__ == "__main__": | |
iface = main() | |
iface.launch() | |