Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spacy
|
2 |
+
import wikipediaapi
|
3 |
+
import wikipedia
|
4 |
+
from wikipedia.exceptions import DisambiguationError
|
5 |
+
from transformers import TFAutoModel, AutoTokenizer
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import faiss
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
try:
|
12 |
+
nlp = spacy.load("en_core_web_sm")
|
13 |
+
except:
|
14 |
+
spacy.cli.download("en_core_web_sm")
|
15 |
+
nlp = spacy.load("en_core_web_sm")
|
16 |
+
|
17 |
+
wh_words = ['what', 'who', 'how', 'when', 'which']
|
18 |
+
def get_concepts(text):
|
19 |
+
text = text.lower()
|
20 |
+
doc = nlp(text)
|
21 |
+
concepts = []
|
22 |
+
for chunk in doc.noun_chunks:
|
23 |
+
if chunk.text not in wh_words:
|
24 |
+
concepts.append(chunk.text)
|
25 |
+
return concepts
|
26 |
+
|
27 |
+
def get_passages(text, k=100):
|
28 |
+
doc = nlp(text)
|
29 |
+
passages = []
|
30 |
+
passage_len = 0
|
31 |
+
passage = ""
|
32 |
+
sents = list(doc.sents)
|
33 |
+
for i in range(len(sents)):
|
34 |
+
sen = sents[i]
|
35 |
+
passage_len+=len(sen)
|
36 |
+
if passage_len >= k:
|
37 |
+
passages.append(passage)
|
38 |
+
passage = sen.text
|
39 |
+
passage_len = len(sen)
|
40 |
+
continue
|
41 |
+
|
42 |
+
elif i==(len(sents)-1):
|
43 |
+
passage+=" "+sen.text
|
44 |
+
passages.append(passage)
|
45 |
+
passage = ""
|
46 |
+
passage_len = 0
|
47 |
+
continue
|
48 |
+
|
49 |
+
passage+=" "+sen.text
|
50 |
+
return passages
|
51 |
+
|
52 |
+
def get_dicts_for_dpr(concepts, n_results=20, k=100):
|
53 |
+
dicts = []
|
54 |
+
for concept in concepts:
|
55 |
+
wikis = wikipedia.search(concept, results=n_results)
|
56 |
+
print(concept, "No of Wikis: ",len(wikis))
|
57 |
+
for wiki in wikis:
|
58 |
+
try:
|
59 |
+
html_page = wikipedia.page(title = wiki, auto_suggest = False)
|
60 |
+
except DisambiguationError:
|
61 |
+
continue
|
62 |
+
|
63 |
+
htmlResults=html_page.content
|
64 |
+
|
65 |
+
passages = get_passages(htmlResults, k=k)
|
66 |
+
for passage in passages:
|
67 |
+
i_dicts = {}
|
68 |
+
i_dicts['text'] = passage
|
69 |
+
i_dicts['title'] = wiki
|
70 |
+
dicts.append(i_dicts)
|
71 |
+
return dicts
|
72 |
+
|
73 |
+
passage_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
74 |
+
query_encoder = TFAutoModel.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
75 |
+
p_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-ctx_encoder_bert_uncased_L-2_H-128_A-2")
|
76 |
+
q_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/dpr-question_encoder_bert_uncased_L-2_H-128_A-2")
|
77 |
+
|
78 |
+
def get_title_text_combined(passage_dicts):
|
79 |
+
res = []
|
80 |
+
for p in passage_dicts:
|
81 |
+
res.append(tuple((p['title'], p['text'])))
|
82 |
+
return res
|
83 |
+
|
84 |
+
def extracted_passage_embeddings(processed_passages, max_length=156):
|
85 |
+
passage_inputs = p_tokenizer.batch_encode_plus(
|
86 |
+
processed_passages,
|
87 |
+
add_special_tokens=True,
|
88 |
+
truncation=True,
|
89 |
+
padding="max_length",
|
90 |
+
max_length=max_length,
|
91 |
+
return_token_type_ids=True
|
92 |
+
)
|
93 |
+
passage_embeddings = passage_encoder.predict([np.array(passage_inputs['input_ids']),
|
94 |
+
np.array(passage_inputs['attention_mask']),
|
95 |
+
np.array(passage_inputs['token_type_ids'])],
|
96 |
+
batch_size=64,
|
97 |
+
verbose=1)
|
98 |
+
return passage_embeddings
|
99 |
+
|
100 |
+
def extracted_query_embeddings(queries, max_length=64):
|
101 |
+
query_inputs = q_tokenizer.batch_encode_plus(
|
102 |
+
queries,
|
103 |
+
add_special_tokens=True,
|
104 |
+
truncation=True,
|
105 |
+
padding="max_length",
|
106 |
+
max_length=max_length,
|
107 |
+
return_token_type_ids=True
|
108 |
+
)
|
109 |
+
query_embeddings = query_encoder.predict([np.array(query_inputs['input_ids']),
|
110 |
+
np.array(query_inputs['attention_mask']),
|
111 |
+
np.array(query_inputs['token_type_ids'])],
|
112 |
+
batch_size=1,
|
113 |
+
verbose=1)
|
114 |
+
return query_embeddings
|
115 |
+
|
116 |
+
#Wikipedia API:
|
117 |
+
|
118 |
+
def get_pagetext(page):
|
119 |
+
s=str(page).replace("/t","")
|
120 |
+
|
121 |
+
return s
|
122 |
+
|
123 |
+
def get_wiki_summary(search):
|
124 |
+
wiki_wiki = wikipediaapi.Wikipedia('en')
|
125 |
+
page = wiki_wiki.page(search)
|
126 |
+
|
127 |
+
isExist = page.exists()
|
128 |
+
if not isExist:
|
129 |
+
return isExist, "Not found", "Not found", "Not found", "Not found"
|
130 |
+
|
131 |
+
pageurl = page.fullurl
|
132 |
+
pagetitle = page.title
|
133 |
+
pagesummary = page.summary[0:60]
|
134 |
+
pagetext = get_pagetext(page.text)
|
135 |
+
|
136 |
+
backlinks = page.backlinks
|
137 |
+
linklist = ""
|
138 |
+
for link in backlinks.items():
|
139 |
+
pui = link[0]
|
140 |
+
linklist += pui + " , "
|
141 |
+
a=1
|
142 |
+
|
143 |
+
categories = page.categories
|
144 |
+
categorylist = ""
|
145 |
+
for category in categories.items():
|
146 |
+
pui = category[0]
|
147 |
+
categorylist += pui + " , "
|
148 |
+
a=1
|
149 |
+
|
150 |
+
links = page.links
|
151 |
+
linklist2 = ""
|
152 |
+
for link in links.items():
|
153 |
+
pui = link[0]
|
154 |
+
linklist2 += pui + " , "
|
155 |
+
a=1
|
156 |
+
|
157 |
+
sections = page.sections
|
158 |
+
|
159 |
+
ex_dic = {
|
160 |
+
'Entity' : ["URL","Title","Summary", "Text", "Backlinks", "Links", "Categories"],
|
161 |
+
'Value': [pageurl, pagetitle, pagesummary, pagetext, linklist,linklist2, categorylist ]
|
162 |
+
}
|
163 |
+
|
164 |
+
df = pd.DataFrame(ex_dic)
|
165 |
+
|
166 |
+
return df
|
167 |
+
|
168 |
+
def search(question):
|
169 |
+
concepts = get_concepts(question)
|
170 |
+
print("concepts: ",concepts)
|
171 |
+
dicts = get_dicts_for_dpr(concepts, n_results=1)
|
172 |
+
lendicts = len(dicts)
|
173 |
+
print("dicts len: ", lendicts)
|
174 |
+
if lendicts == 0:
|
175 |
+
return pd.DataFrame()
|
176 |
+
processed_passages = get_title_text_combined(dicts)
|
177 |
+
passage_embeddings = extracted_passage_embeddings(processed_passages)
|
178 |
+
query_embeddings = extracted_query_embeddings([question])
|
179 |
+
faiss_index = faiss.IndexFlatL2(128)
|
180 |
+
faiss_index.add(passage_embeddings.pooler_output)
|
181 |
+
prob, index = faiss_index.search(query_embeddings.pooler_output, k=lendicts)
|
182 |
+
return pd.DataFrame([dicts[i] for i in index[0]])
|
183 |
+
|
184 |
+
# AI UI SOTA - Gradio blocks with UI formatting, and event driven UI
|
185 |
+
with gr.Blocks() as demo: # Block documentation on event listeners, start here: https://gradio.app/blocks_and_event_listeners/
|
186 |
+
gr.Markdown("<h1><center>π° Ultimate Wikipedia AI π¨</center></h1>")
|
187 |
+
gr.Markdown("""<div align="center">Search and Find Anything Then Use in AI! <a href="https://www.mediawiki.org/wiki/API:Main_page">MediaWiki - API for Wikipedia</a>. <a href="https://paperswithcode.com/datasets?q=wikipedia&v=lst&o=newest">Papers,Code,Datasets for SOTA w/ Wikipedia</a>""")
|
188 |
+
with gr.Row(): # inputs and buttons
|
189 |
+
inp = gr.Textbox(lines=1, default="Syd Mead", label="Question")
|
190 |
+
with gr.Row(): # inputs and buttons
|
191 |
+
b3 = gr.Button("Search AI Summaries")
|
192 |
+
b4 = gr.Button("Search Web Live")
|
193 |
+
with gr.Row(): # outputs DF1
|
194 |
+
out = gr.Dataframe(label="Answers", type="pandas")
|
195 |
+
with gr.Row(): # output DF2
|
196 |
+
out_DF = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate", datatype = ["markdown", "markdown"], headers=['Entity', 'Value'])
|
197 |
+
inp.submit(fn=get_wiki_summary, inputs=inp, outputs=out_DF)
|
198 |
+
b3.click(fn=search, inputs=inp, outputs=out)
|
199 |
+
b4.click(fn=get_wiki_summary, inputs=inp, outputs=out_DF )
|
200 |
+
demo.launch(debug=True, show_error=True)
|