DarwinAnim8or
commited on
Commit
•
312c9c4
1
Parent(s):
31a0491
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
from openvino.runtime import Core
|
4 |
+
from optimum.intel import OVStableDiffusionPipeline
|
5 |
+
from PIL import Image as PImg
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
model_id = "NoCrypt/SomethingV2_2"
|
9 |
+
core = Core()
|
10 |
+
|
11 |
+
# Check available devices
|
12 |
+
devices = core.available_devices
|
13 |
+
print("Available devices:", devices)
|
14 |
+
|
15 |
+
# Use 'GPU' if available, otherwise fall back to 'CPU'
|
16 |
+
device = "GPU" if "GPU" in devices else "CPU"
|
17 |
+
print(f"Using device: {device}")
|
18 |
+
|
19 |
+
ov_pipe_bf16 = OVStableDiffusionPipeline.from_pretrained(
|
20 |
+
model_id,
|
21 |
+
export=True,
|
22 |
+
device=device # Specify the device here
|
23 |
+
)
|
24 |
+
|
25 |
+
# The compile step is not needed as it's handled internally
|
26 |
+
def generate_image(prompt, num_inference_steps):
|
27 |
+
# Generate an image from the prompt using the pipeline
|
28 |
+
start = time.time()
|
29 |
+
output = ov_pipe_bf16(prompt, num_inference_steps=num_inference_steps, output_type="np")
|
30 |
+
end = time.time()
|
31 |
+
print("Inference time: ", end - start)
|
32 |
+
|
33 |
+
# Convert the image to PIL Image object
|
34 |
+
image_data = output.images[0]
|
35 |
+
image_data = (image_data * 255).clip(0, 255).astype(np.uint8)
|
36 |
+
image = PImg.fromarray(image_data)
|
37 |
+
|
38 |
+
# Calculate the target size based on the scaling factor
|
39 |
+
target_resolution = 1.2
|
40 |
+
width = int(image.width * target_resolution)
|
41 |
+
height = int(image.height * target_resolution)
|
42 |
+
target_size = (width, height)
|
43 |
+
|
44 |
+
# Upscale the image to the target resolution
|
45 |
+
upscaled_image = image.resize(target_size, resample=PImg.BICUBIC)
|
46 |
+
return upscaled_image
|
47 |
+
|
48 |
+
|
49 |
+
examples = [
|
50 |
+
["masterpiece, best quality, 1girl, blonde, colorful, clouds, outdoors, falling leaves, smiling, whimsical"],
|
51 |
+
["masterpiece, best quality, landscape"],
|
52 |
+
["masterpiece, best quality, 1girl, aqua eyes, baseball cap, blonde hair, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt"]
|
53 |
+
]
|
54 |
+
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=generate_image,
|
57 |
+
inputs=[
|
58 |
+
gr.Textbox(label="Enter a prompt"),
|
59 |
+
gr.Slider(minimum=1, maximum=20, value=8, step=1, label="Number of inference steps")
|
60 |
+
],
|
61 |
+
outputs=gr.Image(label="Generated image"),
|
62 |
+
title="OpenVINO Anime Diffusion",
|
63 |
+
description="A gradio app that generates an image from a text prompt using the stable diffusion pipeline using the OpenVINO library for speed!",
|
64 |
+
examples=examples,
|
65 |
+
)
|
66 |
+
|
67 |
+
iface.launch()
|