File size: 1,125 Bytes
1516e49
 
 
 
 
6f51388
1516e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from transformers import pipeline
from transformers import pipeline
import re

dante = pipeline('text-generation',model='.', tokenizer='GroNLP/gpt2-small-italian-embeddings')

def grammatical_cleaning(generated: str) -> str:
	generated = re.sub("\.[^\s]",". ", generated)
	generated = re.sub("\,[^\s]",", ", generated)
	generated = re.sub("\;[^\s]","; ", generated)
	generated = re.sub("\:[^\s]",": ", generated)
	generated = re.sub("\![^\s]","! ", generated)
	generated = list(generated)
	for n in range(len(generated)-2):
		if generated[n]=="." or generated[n]=="?":
			if generated[n+1].islower() and generated[n+1].isalpha():
				generated[n+1] = generated[n+1].upper()
			elif generated[n+2].islower() and generated[n+2].isalpha():
				generated[n+2] = generated[n+2].upper()
	return ''.join(generated)

def get_text(input):
	generated = dante(input, max_length=128)[0]['generated_text']
	generated = grammatical_cleaning(generated)
	return generated

inp = input()
print(get_text(inp))

#iface = gr.Interface(fn=get_text, inputs="text", outputs="text")
#iface.launch()