rasyosef commited on
Commit
8edd5de
·
verified ·
1 Parent(s): d44918c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  from threading import Thread
3
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
4
 
5
- model_id = "rasyosef/llama-3.2-amharic-28k-512"
6
 
7
  tokenizer = AutoTokenizer.from_pretrained(model_id)
8
  model = AutoModelForCausalLM.from_pretrained(model_id)
@@ -24,11 +24,11 @@ def generate(prompt):
24
  "inputs": inputs["input_ids"],
25
  "attention_mask": inputs["attention_mask"],
26
  "max_new_tokens": max_new_tokens,
27
- "temperature": 0.4,
28
  "do_sample": True,
29
  "top_k": 8,
30
  "top_p": 0.8,
31
- "repetition_penalty": 1.4,
32
  "streamer": streamer,
33
  "pad_token_id": tokenizer.pad_token_id,
34
  "eos_token_id": tokenizer.eos_token_id
@@ -44,15 +44,15 @@ def generate(prompt):
44
  with gr.Blocks(css="#prompt_textbox textarea {color: blue}") as demo:
45
  gr.Markdown("""
46
  # Llama 3.2 Amharic
47
- This is a demo for [llama-3.2-amharic](https://huggingface.co/rasyosef/llama-3.2-amharic-28k-512), a smaller version of Meta's [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) decoder transformer model pretrained for 1.5 days on `276 million` tokens of **Amharic** text. This model has `155 million` parameters and a context size of `512` tokens. This is a base model and hasn't undergone any supervised finetuing yet.
48
 
49
  Please **enter a prompt** and click the **Generate** button to generate completions for the prompt.
50
  #### Text generation parameters:
51
- - `temperature` : **0.4**
52
  - `do_sample` : **True**
53
  - `top_k` : **8**
54
  - `top_p` : **0.8**
55
- - `repetition_penalty` : **1.4**
56
  """)
57
 
58
  prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here", lines=4, interactive=True, elem_id="prompt_textbox")
 
2
  from threading import Thread
3
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TextIteratorStreamer
4
 
5
+ model_id = "rasyosef/llama-3.2-amharic-64k-1024"
6
 
7
  tokenizer = AutoTokenizer.from_pretrained(model_id)
8
  model = AutoModelForCausalLM.from_pretrained(model_id)
 
24
  "inputs": inputs["input_ids"],
25
  "attention_mask": inputs["attention_mask"],
26
  "max_new_tokens": max_new_tokens,
27
+ "temperature": 0.3,
28
  "do_sample": True,
29
  "top_k": 8,
30
  "top_p": 0.8,
31
+ "repetition_penalty": 1.25,
32
  "streamer": streamer,
33
  "pad_token_id": tokenizer.pad_token_id,
34
  "eos_token_id": tokenizer.eos_token_id
 
44
  with gr.Blocks(css="#prompt_textbox textarea {color: blue}") as demo:
45
  gr.Markdown("""
46
  # Llama 3.2 Amharic
47
+ This is a demo for [llama-3.2-amharic](https://huggingface.co/rasyosef/llama-3.2-amharic-64k-1024), a smaller version of Meta's [Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) decoder transformer model pretrained for 3 days on `210 million` tokens of **Amharic** text. This model has `179 million` parameters and a context size of `1024` tokens. This is a base model and hasn't undergone any supervised finetuing yet.
48
 
49
  Please **enter a prompt** and click the **Generate** button to generate completions for the prompt.
50
  #### Text generation parameters:
51
+ - `temperature` : **0.3**
52
  - `do_sample` : **True**
53
  - `top_k` : **8**
54
  - `top_p` : **0.8**
55
+ - `repetition_penalty` : **1.25**
56
  """)
57
 
58
  prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here", lines=4, interactive=True, elem_id="prompt_textbox")