DamarJati commited on
Commit
132db28
·
verified ·
1 Parent(s): 4e0bf3b

Upload 2 files

Browse files
image_datasets/canny_dataset.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import numpy as np
4
+ from PIL import Image
5
+ import torch
6
+ from torch.utils.data import Dataset, DataLoader
7
+ import json
8
+ import random
9
+ import cv2
10
+
11
+
12
+ def canny_processor(image, low_threshold=100, high_threshold=200):
13
+ image = np.array(image)
14
+ image = cv2.Canny(image, low_threshold, high_threshold)
15
+ image = image[:, :, None]
16
+ image = np.concatenate([image, image, image], axis=2)
17
+ canny_image = Image.fromarray(image)
18
+ return canny_image
19
+
20
+
21
+ def c_crop(image):
22
+ width, height = image.size
23
+ new_size = min(width, height)
24
+ left = (width - new_size) / 2
25
+ top = (height - new_size) / 2
26
+ right = (width + new_size) / 2
27
+ bottom = (height + new_size) / 2
28
+ return image.crop((left, top, right, bottom))
29
+
30
+ class CustomImageDataset(Dataset):
31
+ def __init__(self, img_dir, img_size=512):
32
+ self.images = [os.path.join(img_dir, i) for i in os.listdir(img_dir) if '.jpg' in i or '.png' in i]
33
+ self.images.sort()
34
+ self.img_size = img_size
35
+
36
+ def __len__(self):
37
+ return len(self.images)
38
+
39
+ def __getitem__(self, idx):
40
+ try:
41
+ img = Image.open(self.images[idx])
42
+ img = c_crop(img)
43
+ img = img.resize((self.img_size, self.img_size))
44
+ hint = canny_processor(img)
45
+ img = torch.from_numpy((np.array(img) / 127.5) - 1)
46
+ img = img.permute(2, 0, 1)
47
+ hint = torch.from_numpy((np.array(hint) / 127.5) - 1)
48
+ hint = hint.permute(2, 0, 1)
49
+ json_path = self.images[idx].split('.')[0] + '.json'
50
+ prompt = json.load(open(json_path))['caption']
51
+ return img, hint, prompt
52
+ except Exception as e:
53
+ print(e)
54
+ return self.__getitem__(random.randint(0, len(self.images) - 1))
55
+
56
+
57
+ def loader(train_batch_size, num_workers, **args):
58
+ dataset = CustomImageDataset(**args)
59
+ return DataLoader(dataset, batch_size=train_batch_size, num_workers=num_workers)
image_datasets/dataset.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ import numpy as np
4
+ from PIL import Image
5
+ import torch
6
+ from torch.utils.data import Dataset, DataLoader
7
+ import json
8
+ import random
9
+
10
+ def c_crop(image):
11
+ width, height = image.size
12
+ new_size = min(width, height)
13
+ left = (width - new_size) / 2
14
+ top = (height - new_size) / 2
15
+ right = (width + new_size) / 2
16
+ bottom = (height + new_size) / 2
17
+ return image.crop((left, top, right, bottom))
18
+
19
+ class CustomImageDataset(Dataset):
20
+ def __init__(self, img_dir, img_size=512):
21
+ self.images = [os.path.join(img_dir, i) for i in os.listdir(img_dir) if '.jpg' in i or '.png' in i]
22
+ self.images.sort()
23
+ self.img_size = img_size
24
+
25
+ def __len__(self):
26
+ return len(self.images)
27
+
28
+ def __getitem__(self, idx):
29
+ try:
30
+ img = Image.open(self.images[idx])
31
+ img = c_crop(img)
32
+ img = img.resize((self.img_size, self.img_size))
33
+ img = torch.from_numpy((np.array(img) / 127.5) - 1)
34
+ img = img.permute(2, 0, 1)
35
+ json_path = self.images[idx].split('.')[0] + '.json'
36
+ prompt = json.load(open(json_path))['caption']
37
+ return img, prompt
38
+ except Exception as e:
39
+ print(e)
40
+ return self.__getitem__(random.randint(0, len(self.images) - 1))
41
+
42
+
43
+ def loader(train_batch_size, num_workers, **args):
44
+ dataset = CustomImageDataset(**args)
45
+ return DataLoader(dataset, batch_size=train_batch_size, num_workers=num_workers, shuffle=True)