Daeyongkwon98
commited on
Commit
·
802f276
0
Parent(s):
initial
Browse files- User_Intents_and_Musical_Attributes_Classifier +1 -0
- app.py +99 -0
- requirements.txt +3 -0
User_Intents_and_Musical_Attributes_Classifier
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit e73401a0af87103a963af5b6800e5a6f1bdfe382
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
warnings.simplefilter('ignore')
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import DistilBertTokenizer, DistilBertModel
|
7 |
+
import logging
|
8 |
+
logging.basicConfig(level=logging.ERROR)
|
9 |
+
from torch import cuda
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
def classify(sentence):
|
13 |
+
output = ""
|
14 |
+
class DistilBERTClass(nn.Module):
|
15 |
+
def __init__(self, num_intents):
|
16 |
+
super(DistilBERTClass, self).__init__()
|
17 |
+
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
18 |
+
self.fc1 = nn.Sequential(
|
19 |
+
nn.Linear(768, 64),
|
20 |
+
nn.BatchNorm1d(64),
|
21 |
+
nn.ReLU(),
|
22 |
+
)
|
23 |
+
self.fc2 = nn.Sequential(
|
24 |
+
nn.Linear(64, num_intents)
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, input_ids, attention_mask):
|
28 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
29 |
+
hidden_state = output_1[0]
|
30 |
+
pooler = hidden_state[:, 0]
|
31 |
+
pooler = self.fc1(pooler)
|
32 |
+
output = self.fc2(pooler)
|
33 |
+
return output
|
34 |
+
|
35 |
+
user_intents = ['initial_query', 'greeting', 'add_filter', 'remove_filter', 'continue', 'accept_response', 'reject_response']
|
36 |
+
musical_attributes = ['track', 'artist', 'year', 'popularity', 'culture', 'similar_track', 'similar_artist', 'user', 'theme', 'mood', 'genre', 'instrument', 'vocal', 'tempo']
|
37 |
+
intents_dict = {"user": user_intents, "music": musical_attributes}
|
38 |
+
num_intents_dict = {'user': 7, 'music': 14}
|
39 |
+
|
40 |
+
device = 'cuda:0' if cuda.is_available() else 'cpu'
|
41 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
|
42 |
+
|
43 |
+
for data_type in ["user", "music"]:
|
44 |
+
num_intents = num_intents_dict[data_type]
|
45 |
+
|
46 |
+
model = DistilBERTClass(num_intents)
|
47 |
+
model.load_state_dict(torch.load(f"./models/{data_type}_finetune_model.pth"))
|
48 |
+
model.to(device)
|
49 |
+
|
50 |
+
# Tokenize the input sentence
|
51 |
+
inputs = tokenizer.encode_plus(
|
52 |
+
sentence,
|
53 |
+
None,
|
54 |
+
add_special_tokens=True,
|
55 |
+
max_length=128,
|
56 |
+
pad_to_max_length=True,
|
57 |
+
return_token_type_ids=False,
|
58 |
+
return_attention_mask=True,
|
59 |
+
truncation=True
|
60 |
+
)
|
61 |
+
|
62 |
+
input_ids = torch.tensor(inputs['input_ids']).unsqueeze(0).to(device)
|
63 |
+
attention_mask = torch.tensor(inputs['attention_mask']).unsqueeze(0).to(device)
|
64 |
+
|
65 |
+
model.eval()
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model(input_ids, attention_mask)
|
68 |
+
probability_outputs = torch.sigmoid(outputs).cpu().detach().numpy()
|
69 |
+
|
70 |
+
binary_outputs = (probability_outputs >= 0.5)
|
71 |
+
binary_outputs[np.all(binary_outputs == False, axis=1), -1] = True
|
72 |
+
|
73 |
+
intents = intents_dict[data_type]
|
74 |
+
predicted_intents = [intent for i, intent in enumerate(intents) if binary_outputs[0][i] == 1]
|
75 |
+
|
76 |
+
if data_type=="user":
|
77 |
+
output += f"User Intents: {predicted_intents}\n"
|
78 |
+
else:
|
79 |
+
output += f"Musical Attributes: {predicted_intents}\n"
|
80 |
+
return output
|
81 |
+
|
82 |
+
title = "User Intents and Musical Attributes Classifier"
|
83 |
+
description = """
|
84 |
+
You can engage in a conversation with the music recommendation system, imagining a situation where it recommends music to you. The model will then predict the intents and musical attributes based on the sentence you provide.
|
85 |
+
<img src="https://github.com/user-attachments/assets/a8bfb1dc-856b-4f85-82dd-510cddcc2aeb" width=400px>
|
86 |
+
"""
|
87 |
+
article = "For more information, visit [Github Repository.](https://github.com/DaeyongKwon98/Intent-Classification/tree/main)"
|
88 |
+
|
89 |
+
demo = gr.Interface(
|
90 |
+
fn=classify,
|
91 |
+
inputs="text",
|
92 |
+
outputs="text",
|
93 |
+
title=title,
|
94 |
+
description=description,
|
95 |
+
article=article,
|
96 |
+
examples=[["Hi, I need a playlist of rock songs to listen when I exercise."], ["I love Ariana Grande! Give me more."], ["I think these are too fast for me."]],
|
97 |
+
)
|
98 |
+
|
99 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|