Fast_TTS / deprecated copy.py
Remsky's picture
Add wav files and GPU timeout changes
4259439
# import os
# import gradio as gr
# import time
# import math
# import logging
# import matplotlib.pyplot as plt
# import numpy as np
# # from lib.mock_tts import MockTTSModel
# from lib import format_audio_output
# from lib.ui_content import header_html, demo_text_info
# from lib.book_utils import get_available_books, get_book_info, get_chapter_text
# from lib.text_utils import count_tokens
# from tts_model import TTSModel
# # Set HF_HOME for faster restarts with cached models/voices
# os.environ["HF_HOME"] = "/data/.huggingface"
# # Create TTS model instance
# model = TTSModel()
# # Configure logging
# logging.basicConfig(level=logging.DEBUG)
# # Suppress matplotlib debug messages
# logging.getLogger('matplotlib').setLevel(logging.WARNING)
# logger = logging.getLogger(__name__)
# logger.debug("Starting app initialization...")
# model = TTSModel()
# def initialize_model():
# """Initialize model and get voices"""
# if model.model is None:
# if not model.initialize():
# raise gr.Error("Failed to initialize model")
# voices = model.list_voices()
# if not voices:
# raise gr.Error("No voices found. Please check the voices directory.")
# default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
# return gr.update(choices=voices, value=default_voice)
# def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
# # Calculate time metrics
# elapsed = time.time() - start_time
# gpu_time_left = max(0, gpu_timeout - elapsed)
# # Calculate chunk time more accurately
# prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
# chunk_time = elapsed - prev_total_time
# # Validate metrics before adding to state
# if chunk_time > 0 and tokens_per_sec >= 0:
# # Update progress state with validated metrics
# progress_state["progress"] = chunk_num / total_chunks
# progress_state["total_chunks"] = total_chunks
# progress_state["gpu_time_left"] = gpu_time_left
# progress_state["tokens_per_sec"].append(float(tokens_per_sec))
# progress_state["rtf"].append(float(rtf))
# progress_state["chunk_times"].append(chunk_time)
# # Only update progress display during processing
# progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
# def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
# """Handle text-to-speech generation from the Gradio UI"""
# try:
# if not text or not voice_names:
# raise gr.Error("Please enter text and select at least one voice")
# start_time = time.time()
# # Create progress state with explicit type initialization
# progress_state = {
# "progress": 0.0,
# "tokens_per_sec": [], # Initialize as empty list
# "rtf": [], # Initialize as empty list
# "chunk_times": [], # Initialize as empty list
# "gpu_time_left": float(gpu_timeout), # Ensure float
# "total_chunks": 0
# }
# # Handle single or multiple voices
# if isinstance(voice_names, str):
# voice_names = [voice_names]
# # Generate speech with progress tracking using combined voice
# audio_array, duration, metrics = model.generate_speech(
# text,
# voice_names,
# speed,
# gpu_timeout=gpu_timeout,
# progress_callback=update_progress,
# progress_state=progress_state,
# progress=progress
# )
# # Format output for Gradio
# audio_output, duration_text = format_audio_output(audio_array)
# # Create plot and metrics text outside GPU context
# fig, metrics_text = create_performance_plot(metrics, voice_names)
# return (
# audio_output,
# fig,
# metrics_text
# )
# except Exception as e:
# raise gr.Error(f"Generation failed: {str(e)}")
# def create_performance_plot(metrics, voice_names):
# """Create performance plot and metrics text from generation metrics"""
# # Clean and process the data
# tokens_per_sec = np.array(metrics["tokens_per_sec"])
# rtf_values = np.array(metrics["rtf"])
# # Calculate statistics using cleaned data
# median_tps = float(np.median(tokens_per_sec))
# mean_tps = float(np.mean(tokens_per_sec))
# std_tps = float(np.std(tokens_per_sec))
# # Set y-axis limits based on data range
# y_min = max(0, np.min(tokens_per_sec) * 0.9)
# y_max = np.max(tokens_per_sec) * 1.1
# # Create plot
# fig, ax = plt.subplots(figsize=(10, 5))
# fig.patch.set_facecolor('black')
# ax.set_facecolor('black')
# # Plot data points
# chunk_nums = list(range(1, len(tokens_per_sec) + 1))
# # Plot data points
# ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
# # Set y-axis limits with padding
# padding = 0.1 * (y_max - y_min)
# ax.set_ylim(max(0, y_min - padding), y_max + padding)
# # Add median line
# ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
# label=f'Median: {median_tps:.1f} tokens/sec')
# # Style improvements
# ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
# ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
# ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
# ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
# ax.spines['bottom'].set_color('white')
# ax.spines['top'].set_color('white')
# ax.spines['left'].set_color('white')
# ax.spines['right'].set_color('white')
# ax.grid(False)
# ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
# labelcolor='white')
# plt.tight_layout()
# # Calculate average RTF from individual chunk RTFs
# rtf = np.mean(rtf_values)
# # Prepare metrics text
# metrics_text = (
# f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
# f"Real-time Factor: {rtf:.3f}\n" +
# f"Real Time Speed: {int(1/rtf)}x\n" +
# f"Processing Time: {int(metrics['total_time'])}s\n" +
# f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
# f"Voices: {', '.join(voice_names)}"
# )
# return fig, metrics_text
# # Create Gradio interface
# with gr.Blocks(title="Kokoro TTS Demo", css="""
# .equal-height {
# min-height: 400px;
# display: flex;
# flex-direction: column;
# }
# .token-label {
# font-size: 1rem;
# margin-bottom: 0.3rem;
# text-align: center;
# padding: 0.2rem 0;
# }
# .token-count {
# color: #4169e1;
# }
# """) as demo:
# gr.HTML(header_html)
# with gr.Row():
# # Column 1: Text Input and Book Selection
# with gr.Column(elem_classes="equal-height"):
# # Book selection
# books = get_available_books()
# book_dropdown = gr.Dropdown(
# label="Select Book",
# choices=[book['label'] for book in books],
# value=books[0]['label'] if books else None,
# type="value",
# allow_custom_value=True
# )
# # Initialize chapters for first book
# initial_book = books[0]['value'] if books else None
# initial_chapters = []
# if initial_book:
# book_path = os.path.join("texts/processed", initial_book)
# _, chapters = get_book_info(book_path)
# initial_chapters = [ch['title'] for ch in chapters]
# # Chapter selection with initial chapters
# chapter_dropdown = gr.Dropdown(
# label="Select Chapter",
# choices=initial_chapters,
# value=initial_chapters[0] if initial_chapters else None,
# type="value",
# allow_custom_value=True
# )
# lab_tps = 175
# lab_rts = 50
# # Text input area with initial chapter text
# initial_text = ""
# if initial_chapters and initial_book:
# book_path = os.path.join("texts/processed", initial_book)
# _, chapters = get_book_info(book_path)
# if chapters:
# initial_text = get_chapter_text(book_path, chapters[0]['id'])
# tokens = count_tokens(initial_text)
# time_estimate = math.ceil(tokens / lab_tps)
# output_estimate = (time_estimate * lab_rts)//60
# initial_label = f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
# else:
# initial_label = '<div class="token-label"></div>'
# else:
# initial_label = '<div class="token-label"></div>'
# def update_text_label(text):
# if not text:
# return '<div class="token-label"></div>'
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / lab_tps)
# output_estimate = (time_estimate * lab_rts)//60
# return f'<div class="token-label"><span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
# text_input = gr.TextArea(
# label=None,
# placeholder="Enter text here, select a chapter, or upload a .txt file",
# value=initial_text,
# lines=8,
# max_lines=14,
# show_label=False,
# show_copy_button=True # Add copy button for convenience
# )
# clear_btn = gr.Button("Clear Text", variant="secondary")
# label_html = gr.HTML(initial_label)
# def clear_text():
# return "", '<div class="token-label"></div>'
# clear_btn.click(
# fn=clear_text,
# outputs=[text_input, label_html]
# )
# # Update label whenever text changes
# text_input.change(
# fn=update_text_label,
# inputs=[text_input],
# outputs=[label_html],
# trigger_mode="always_last"
# )
# def update_chapters(book_name):
# if not book_name:
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
# # Find the corresponding book file
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
# if not book_file:
# return gr.update(choices=[], value=None), "", '<div class="token-label"></div>'
# book_path = os.path.join("texts/processed", book_file)
# book_title, chapters = get_book_info(book_path)
# # Create simple choices list of chapter titles
# chapter_choices = [ch['title'] for ch in chapters]
# # Set initial chapter text when book is selected
# initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
# if initial_text:
# tokens = count_tokens(initial_text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10
# label = f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# else:
# label = '<div class="token-label"></div>'
# return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
# def load_chapter_text(book_name, chapter_title):
# if not book_name or not chapter_title:
# return "", '<div class="token-label"></div>'
# # Find the corresponding book file
# book_file = next((book['value'] for book in books if book['label'] == book_name), None)
# if not book_file:
# return "", '<div class="token-label"></div>'
# book_path = os.path.join("texts/processed", book_file)
# # Get all chapters and find the one matching the title
# _, chapters = get_book_info(book_path)
# for ch in chapters:
# if ch['title'] == chapter_title:
# text = get_chapter_text(book_path, ch['id'])
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10
# return text, f'<div class="token-label"> <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# return "", '<div class="token-label"></div>'
# # Set up event handlers for book/chapter selection
# book_dropdown.change(
# fn=update_chapters,
# inputs=[book_dropdown],
# outputs=[chapter_dropdown, text_input, label_html]
# )
# chapter_dropdown.change(
# fn=load_chapter_text,
# inputs=[book_dropdown, chapter_dropdown],
# outputs=[text_input, label_html]
# )
# # Column 2: Controls
# with gr.Column(elem_classes="equal-height"):
# file_input = gr.File(
# label="Upload .txt file",
# file_types=[".txt"],
# type="binary"
# )
# def load_text_from_file(file_bytes):
# if file_bytes is None:
# return None, '<div class="token-label"></div>'
# try:
# text = file_bytes.decode('utf-8')
# tokens = count_tokens(text)
# time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds
# return text, f'<div class="token-label"><span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
# except Exception as e:
# raise gr.Error(f"Failed to read file: {str(e)}")
# file_input.change(
# fn=load_text_from_file,
# inputs=[file_input],
# outputs=[text_input, label_html]
# )
# with gr.Group():
# voice_dropdown = gr.Dropdown(
# label="Voice(s)",
# choices=[], # Start empty, will be populated after initialization
# value=None,
# allow_custom_value=True,
# multiselect=True
# )
# # Add refresh button to manually update voice list
# refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
# speed_slider = gr.Slider(
# label="Speed",
# minimum=0.5,
# maximum=2.0,
# value=1.0,
# step=0.1
# )
# gpu_timeout_slider = gr.Slider(
# label="GPU Timeout (seconds)",
# minimum=15,
# maximum=120,
# value=90,
# step=1,
# info="Maximum time allowed for GPU processing"
# )
# submit_btn = gr.Button("Generate Speech", variant="primary")
# # Column 3: Output
# with gr.Column(elem_classes="equal-height"):
# audio_output = gr.Audio(
# label="Generated Speech",
# type="numpy",
# format="wav",
# autoplay=False
# )
# progress_bar = gr.Progress(track_tqdm=False)
# metrics_text = gr.Textbox(
# label="Performance Summary",
# interactive=False,
# lines=5
# )
# metrics_plot = gr.Plot(
# label="Processing Metrics",
# show_label=True,
# format="png" # Explicitly set format to PNG which is supported by matplotlib
# )
# # Set up event handlers
# refresh_btn.click(
# fn=initialize_model,
# outputs=[voice_dropdown]
# )
# submit_btn.click(
# fn=generate_speech_from_ui,
# inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
# outputs=[audio_output, metrics_plot, metrics_text],
# show_progress=True
# )
# # Add text analysis info
# with gr.Row():
# with gr.Column():
# gr.Markdown(demo_text_info)
# # Initialize voices on load
# demo.load(
# fn=initialize_model,
# outputs=[voice_dropdown]
# )
# # Launch the app
# if __name__ == "__main__":
# demo.launch()