Fast_TTS / app.py
Remsky's picture
Add .gitignore, update requirements, and implement book processing utilities
9a2b6d1
raw
history blame
17.6 kB
import os
import gradio as gr
import time
import math
import logging
import matplotlib.pyplot as plt
import numpy as np
# from lib.mock_tts import MockTTSModel
from lib import format_audio_output
from lib.ui_content import header_html, demo_text_info
from lib.book_utils import get_available_books, get_book_info, get_chapter_text
from lib.text_utils import count_tokens
from tts_model import TTSModel
# Set HF_HOME for faster restarts with cached models/voices
os.environ["HF_HOME"] = "/data/.huggingface"
# Create TTS model instance
model = TTSModel()
# Configure logging
logging.basicConfig(level=logging.DEBUG)
# Suppress matplotlib debug messages
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.debug("Starting app initialization...")
model = TTSModel()
def initialize_model():
"""Initialize model and get voices"""
if model.model is None:
if not model.initialize():
raise gr.Error("Failed to initialize model")
voices = model.list_voices()
if not voices:
raise gr.Error("No voices found. Please check the voices directory.")
default_voice = 'af_sky' if 'af_sky' in voices else voices[0] if voices else None
return gr.update(choices=voices, value=default_voice)
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress):
# Calculate time metrics
elapsed = time.time() - start_time
gpu_time_left = max(0, gpu_timeout - elapsed)
# Calculate chunk time more accurately
prev_total_time = sum(progress_state["chunk_times"]) if progress_state["chunk_times"] else 0
chunk_time = elapsed - prev_total_time
# Validate metrics before adding to state
if chunk_time > 0 and tokens_per_sec >= 0:
# Update progress state with validated metrics
progress_state["progress"] = chunk_num / total_chunks
progress_state["total_chunks"] = total_chunks
progress_state["gpu_time_left"] = gpu_time_left
progress_state["tokens_per_sec"].append(float(tokens_per_sec))
progress_state["rtf"].append(float(rtf))
progress_state["chunk_times"].append(chunk_time)
# Only update progress display during processing
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
def generate_speech_from_ui(text, voice_names, speed, gpu_timeout, progress=gr.Progress(track_tqdm=False)):
"""Handle text-to-speech generation from the Gradio UI"""
try:
if not text or not voice_names:
raise gr.Error("Please enter text and select at least one voice")
start_time = time.time()
# Create progress state with explicit type initialization
progress_state = {
"progress": 0.0,
"tokens_per_sec": [], # Initialize as empty list
"rtf": [], # Initialize as empty list
"chunk_times": [], # Initialize as empty list
"gpu_time_left": float(gpu_timeout), # Ensure float
"total_chunks": 0
}
# Handle single or multiple voices
if isinstance(voice_names, str):
voice_names = [voice_names]
# Generate speech with progress tracking using combined voice
audio_array, duration, metrics = model.generate_speech(
text,
voice_names,
speed,
gpu_timeout=gpu_timeout,
progress_callback=update_progress,
progress_state=progress_state,
progress=progress
)
# Format output for Gradio
audio_output, duration_text = format_audio_output(audio_array)
# Create plot and metrics text outside GPU context
fig, metrics_text = create_performance_plot(metrics, voice_names)
return (
audio_output,
fig,
metrics_text
)
except Exception as e:
raise gr.Error(f"Generation failed: {str(e)}")
def create_performance_plot(metrics, voice_names):
"""Create performance plot and metrics text from generation metrics"""
# Clean and process the data
tokens_per_sec = np.array(metrics["tokens_per_sec"])
rtf_values = np.array(metrics["rtf"])
# Calculate statistics using cleaned data
median_tps = float(np.median(tokens_per_sec))
mean_tps = float(np.mean(tokens_per_sec))
std_tps = float(np.std(tokens_per_sec))
# Set y-axis limits based on data range
y_min = max(0, np.min(tokens_per_sec) * 0.9)
y_max = np.max(tokens_per_sec) * 1.1
# Create plot
fig, ax = plt.subplots(figsize=(10, 5))
fig.patch.set_facecolor('black')
ax.set_facecolor('black')
# Plot data points
chunk_nums = list(range(1, len(tokens_per_sec) + 1))
# Plot data points
ax.bar(chunk_nums, tokens_per_sec, color='#ff2a6d', alpha=0.6)
# Set y-axis limits with padding
padding = 0.1 * (y_max - y_min)
ax.set_ylim(max(0, y_min - padding), y_max + padding)
# Add median line
ax.axhline(y=median_tps, color='#05d9e8', linestyle='--',
label=f'Median: {median_tps:.1f} tokens/sec')
# Style improvements
ax.set_xlabel('Chunk Number', fontsize=24, labelpad=20, color='white')
ax.set_ylabel('Tokens per Second', fontsize=24, labelpad=20, color='white')
ax.set_title('Processing Speed by Chunk', fontsize=28, pad=30, color='white')
ax.tick_params(axis='both', which='major', labelsize=20, colors='white')
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
ax.spines['left'].set_color('white')
ax.spines['right'].set_color('white')
ax.grid(False)
ax.legend(fontsize=20, facecolor='black', edgecolor='#05d9e8', loc='lower left',
labelcolor='white')
plt.tight_layout()
# Calculate average RTF from individual chunk RTFs
rtf = np.mean(rtf_values)
# Prepare metrics text
metrics_text = (
f"Median Speed: {median_tps:.1f} tokens/sec (o200k_base)\n" +
f"Real-time Factor: {rtf:.3f}\n" +
f"Real Time Speed: {int(1/rtf)}x\n" +
f"Processing Time: {int(metrics['total_time'])}s\n" +
f"Total Tokens: {metrics['total_tokens']} (o200k_base)\n" +
f"Voices: {', '.join(voice_names)}"
)
return fig, metrics_text
# Create Gradio interface
with gr.Blocks(title="Kokoro TTS Demo", css="""
.equal-height {
min-height: 400px;
display: flex;
flex-direction: column;
}
.token-label {
font-size: 1rem;
margin-bottom: 0.5rem;
}
.token-count {
color: #4169e1;
}
.centered-label {
display: flex;
justify-content: center;
align-items: center;
text-align: center;
margin: 10px 0;
}
""") as demo:
gr.HTML(header_html)
with gr.Row():
# Column 1: Text Input and Book Selection
with gr.Column(elem_classes="equal-height"):
# Book selection
books = get_available_books()
book_dropdown = gr.Dropdown(
label="Select Book",
choices=[book['label'] for book in books],
value=books[0]['label'] if books else None,
type="value",
allow_custom_value=True
)
# Initialize chapters for first book
initial_book = books[0]['value'] if books else None
initial_chapters = []
if initial_book:
book_path = os.path.join("texts/processed", initial_book)
_, chapters = get_book_info(book_path)
initial_chapters = [ch['title'] for ch in chapters]
# Chapter selection with initial chapters
chapter_dropdown = gr.Dropdown(
label="Select Chapter",
choices=initial_chapters,
value=initial_chapters[0] if initial_chapters else None,
type="value",
allow_custom_value=True
)
lab_tps = 175
lab_rts = 50
# Text input area with initial chapter text
initial_text = ""
if initial_chapters and initial_book:
book_path = os.path.join("texts/processed", initial_book)
_, chapters = get_book_info(book_path)
if chapters:
initial_text = get_chapter_text(book_path, chapters[0]['id'])
tokens = count_tokens(initial_text)
time_estimate = math.ceil(tokens / lab_tps)
output_estimate = (time_estimate * lab_rts)//60
initial_label = f'<div class="token-label">Text to speak <span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
else:
initial_label = '<div class="token-label">Text to speak</div>'
else:
initial_label = '<div class="token-label">Text to speak</div>'
def update_text_label(text):
if not text:
return '<div class="token-label">Text to speak</div>'
tokens = count_tokens(text)
time_estimate = math.ceil(tokens / lab_tps)
output_estimate = (time_estimate * lab_rts)//60
return f'<div class="token-label">Text to speak <span class="token-count">Estimated {output_estimate} minutes in ~{time_estimate}s</span></div>'
text_input = gr.TextArea(
label=None,
placeholder="Enter text here, select a chapter, or upload a .txt file",
value=initial_text,
lines=10,
show_label=False,
show_copy_button=True # Add copy button for convenience
)
with gr.Row(equal_height=True):
with gr.Column():
label_html = gr.HTML(initial_label, elem_classes="centered-label")
# Update label whenever text changes
text_input.change(
fn=update_text_label,
inputs=[text_input],
outputs=[label_html],
trigger_mode="always_last"
)
clear_btn = gr.Button("Clear Text", variant="secondary")
def clear_text():
return "", '<div class="token-label">Text to speak</div>'
clear_btn.click(
fn=clear_text,
outputs=[text_input, label_html]
)
def update_chapters(book_name):
if not book_name:
return gr.update(choices=[], value=None), "", '<div class="token-label">Text to speak</div>'
# Find the corresponding book file
book_file = next((book['value'] for book in books if book['label'] == book_name), None)
if not book_file:
return gr.update(choices=[], value=None), "", '<div class="token-label">Text to speak</div>'
book_path = os.path.join("texts/processed", book_file)
book_title, chapters = get_book_info(book_path)
# Create simple choices list of chapter titles
chapter_choices = [ch['title'] for ch in chapters]
# Set initial chapter text when book is selected
initial_text = get_chapter_text(book_path, chapters[0]['id']) if chapters else ""
if initial_text:
tokens = count_tokens(initial_text)
time_estimate = math.ceil(tokens / 150 / 10) * 10
label = f'<div class="token-label">Text to speak <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
else:
label = '<div class="token-label">Text to speak</div>'
return gr.update(choices=chapter_choices, value=chapter_choices[0] if chapter_choices else None), initial_text, label
def load_chapter_text(book_name, chapter_title):
if not book_name or not chapter_title:
return "", '<div class="token-label">Text to speak</div>'
# Find the corresponding book file
book_file = next((book['value'] for book in books if book['label'] == book_name), None)
if not book_file:
return "", '<div class="token-label">Text to speak</div>'
book_path = os.path.join("texts/processed", book_file)
# Get all chapters and find the one matching the title
_, chapters = get_book_info(book_path)
for ch in chapters:
if ch['title'] == chapter_title:
text = get_chapter_text(book_path, ch['id'])
tokens = count_tokens(text)
time_estimate = math.ceil(tokens / 150 / 10) * 10
return text, f'<div class="token-label">Text to speak <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
return "", '<div class="token-label">Text to speak</div>'
# Set up event handlers for book/chapter selection
book_dropdown.change(
fn=update_chapters,
inputs=[book_dropdown],
outputs=[chapter_dropdown, text_input, label_html]
)
chapter_dropdown.change(
fn=load_chapter_text,
inputs=[book_dropdown, chapter_dropdown],
outputs=[text_input, label_html]
)
# Column 2: Controls
with gr.Column(elem_classes="equal-height"):
file_input = gr.File(
label="Upload .txt file",
file_types=[".txt"],
type="binary"
)
def load_text_from_file(file_bytes):
if file_bytes is None:
return None, '<div class="token-label">Text to speak</div>'
try:
text = file_bytes.decode('utf-8')
tokens = count_tokens(text)
time_estimate = math.ceil(tokens / 150 / 10) * 10 # Round up to nearest 10 seconds
return text, f'<div class="token-label">Text to speak <span class="token-count">({tokens} tokens, ~{time_estimate}s generation time)</span></div>'
except Exception as e:
raise gr.Error(f"Failed to read file: {str(e)}")
file_input.change(
fn=load_text_from_file,
inputs=[file_input],
outputs=[text_input, label_html]
)
with gr.Group():
voice_dropdown = gr.Dropdown(
label="Voice(s)",
choices=[], # Start empty, will be populated after initialization
value=None,
allow_custom_value=True,
multiselect=True
)
# Add refresh button to manually update voice list
refresh_btn = gr.Button("🔄 Refresh Voices", size="sm")
speed_slider = gr.Slider(
label="Speed",
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1
)
gpu_timeout_slider = gr.Slider(
label="GPU Timeout (seconds)",
minimum=15,
maximum=120,
value=90,
step=1,
info="Maximum time allowed for GPU processing"
)
submit_btn = gr.Button("Generate Speech", variant="primary")
# Column 3: Output
with gr.Column(elem_classes="equal-height"):
audio_output = gr.Audio(
label="Generated Speech",
type="numpy",
format="wav",
autoplay=False
)
progress_bar = gr.Progress(track_tqdm=False)
metrics_text = gr.Textbox(
label="Performance Summary",
interactive=False,
lines=5
)
metrics_plot = gr.Plot(
label="Processing Metrics",
show_label=True,
format="png" # Explicitly set format to PNG which is supported by matplotlib
)
# Set up event handlers
refresh_btn.click(
fn=initialize_model,
outputs=[voice_dropdown]
)
submit_btn.click(
fn=generate_speech_from_ui,
inputs=[text_input, voice_dropdown, speed_slider, gpu_timeout_slider],
outputs=[audio_output, metrics_plot, metrics_text],
show_progress=True
)
# Add text analysis info
with gr.Row():
with gr.Column():
gr.Markdown(demo_text_info)
# Initialize voices on load
demo.load(
fn=initialize_model,
outputs=[voice_dropdown]
)
# Launch the app
if __name__ == "__main__":
demo.launch()