julienserbanescu-rag / docs /faiss /document_lookup.txt
DaJulster's picture
Add essential files for deployment
80d5985
Document 0:
Source: https://julien-ser.github.io/JulienSerbanescu/
Type: Unknown
Content Preview: Julien Serbanescu
Julien Serbanescu...
--------------------------------------------------------------------------------
Document 1:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: UnAnswGen: A Systematic Approach for Generating
Unanswerable Questions in Machine Reading Comprehens...
--------------------------------------------------------------------------------
Document 2:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Unlike existing datasets like SQuAD2.0, which do not account for
the reasons behind question unanswe...
--------------------------------------------------------------------------------
Document 3:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: query reformulation. The resulting UnAnswGen dataset and asso-
ciated software workflow are made pub...
--------------------------------------------------------------------------------
Document 4:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: on the first page. Copyrights for components of this work owned by others than the
author(s) must be...
--------------------------------------------------------------------------------
Document 5:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP
’24), December 9–12, 2024,...
--------------------------------------------------------------------------------
Document 6:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: should avoid responding rather than making uncertain guesses,
demonstrating their language comprehen...
--------------------------------------------------------------------------------
Document 7:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: systems advance to meet the complexity of real-world information
needs, there is an increasing deman...
--------------------------------------------------------------------------------
Document 8:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb...
--------------------------------------------------------------------------------
Document 9:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: SQuAD2-CR
[17] Wikip
edia Cr
owdsourcing (86,821
- 43,498) 6 [19] 2020
Dur
eader [11] Chinese
search...
--------------------------------------------------------------------------------
Document 10:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: instance, it contains only 3,350 unanswerable questions labeled
with No Information. Moreover, as th...
--------------------------------------------------------------------------------
Document 11:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: ing unanswerable questions and enables the exploration of various
causes of unanswerability. The onl...
--------------------------------------------------------------------------------
Document 12:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: unanswerable questions into answerable ones.
To develop a multi-label MRC dataset with unanswerable ...
--------------------------------------------------------------------------------
Document 13:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: mation for each input question. Second, the generated candidate
unanswerable questions are evaluated...
--------------------------------------------------------------------------------
Document 14:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: The advantages of our work are twofold: (1) Our implementation
of the proposed software workflow all...
--------------------------------------------------------------------------------
Document 15:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: of SQuAD2.0 that includes multi-labeled unanswerable questions.
Figure 1 presents the overview of ou...
--------------------------------------------------------------------------------
Document 16:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens...
--------------------------------------------------------------------------------
Document 17:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: linguistic dimensions such as entity swap, number swap, negation,
antonym, mutual exclusion, and no ...
--------------------------------------------------------------------------------
Document 18:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: passage, and its candidate unanswerable questions. We have imple-
mented and integrated a comprehens...
--------------------------------------------------------------------------------
Document 19:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: placement: For each entity in the input answerable question, we
replace it with another entity of th...
--------------------------------------------------------------------------------
Document 20:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: corresponding context.
Number Swap. Number Swap involves modifying a question to
potentially render ...
--------------------------------------------------------------------------------
Document 21:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Time magazine named her one of the most 100 influential people of the
century? could be Time magazin...
--------------------------------------------------------------------------------
Document 22:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: (2) Replacement: Replace each identified word with its antonym,
ensuring the modified question remai...
--------------------------------------------------------------------------------
Document 23:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb...
--------------------------------------------------------------------------------
Document 24:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: of her music?, utilizing the Detection and Removal approach might
lead to a question such as BeyoncΓ©...
--------------------------------------------------------------------------------
Document 25:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: formation available in the given context, the question becomes
inherently unanswerable. For instance...
--------------------------------------------------------------------------------
Document 26:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: No Information. Similar to [33], to modify the original answer-
able questions by considering this c...
--------------------------------------------------------------------------------
Document 27:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: California is also home to a large homegrown surf and skateboard cul-
ture.... This method ensures t...
--------------------------------------------------------------------------------
Document 28:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: π‘Žπ‘– , and for each candidate unanswerable question (𝑐𝑗,𝑙𝑗 ) βˆˆπΆπ‘žπ‘– , we
conduct the following evaluatio...
--------------------------------------------------------------------------------
Document 29:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: π‘žπ‘– , denoted as π‘žβ€²
𝑖 , to π‘ˆπ‘žπ‘– , and attribute 𝑙𝑗 as the reason for the
unanswerability of π‘žβ€²
𝑖 .
The...
--------------------------------------------------------------------------------
Document 30:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: are answerable. This dataset, developed through crowdsourcing,
consists of a training set with 130,3...
--------------------------------------------------------------------------------
Document 31:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: swerable candidate questions from a single modification process.
Consequently, from the 86,821 answe...
--------------------------------------------------------------------------------
Document 32:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens...
--------------------------------------------------------------------------------
Document 33:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: ele
ctra-base-squad2 74.8 84.7 84.7 67.9 87.8 93.5 72.2 81.6 89.9
r
oberta-large-squad 78.7 90 90 69...
--------------------------------------------------------------------------------
Document 34:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: questions by returning a null or empty string when no appropri-
ate answer is found within the conte...
--------------------------------------------------------------------------------
Document 35:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: score indicating the model’s certainty in its provided answer. For
unanswerable questions, these mod...
--------------------------------------------------------------------------------
Document 36:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Table 4: Statistics on UnAnswGen dataset.
Unansw
erability Classes #
of Questions Per
centage A
vera...
--------------------------------------------------------------------------------
Document 37:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: of the final unanswerable question set. Specifically, questions from
the Negation category account f...
--------------------------------------------------------------------------------
Document 38:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: under the Negation label, 31.95 unanswerable questions under the
Antonym label, and only 2.6 unanswe...
--------------------------------------------------------------------------------
Document 39:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: indicates that the question is completely unrelated to the context,
whereas a score of 1 indicates s...
--------------------------------------------------------------------------------
Document 40:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: SIGIR-AP ’24, December 9–12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb...
--------------------------------------------------------------------------------
Document 41:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: SQuAD2-CR+UnAnsw
Gen 71.93 71.93 92.48 96.09 51.43 58.27 46.83 63.78 69.17 81.77 64.86 78.69 86.8 92...
--------------------------------------------------------------------------------
Document 42:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: to evaluate the UnAnswerGen dataset against these criteria. Table
6 presents the results of Krippend...
--------------------------------------------------------------------------------
Document 43:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: CR, which already includes multi-class labeling of unanswerable
questions, and (2) the SQuAD2-CR tra...
--------------------------------------------------------------------------------
Document 44:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: underwent training on both the enhanced SQuAD2.0+ UnAnswGen
and the original SQuAD2-CR datasets, wit...
--------------------------------------------------------------------------------
Document 45:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: BERTa, and 1% for Electra were observed. The balanced dataset
successfully mitigates issues related ...
--------------------------------------------------------------------------------
Document 46:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: hanced MRC datasets, with a focus on including multi-label unan-
swerable questions. We have develop...
--------------------------------------------------------------------------------
Document 47:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: flow to enrich other datasets, such as HotPotQA [35] and Natural
Questions [16], with multi-label un...
--------------------------------------------------------------------------------
Document 48:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens...
--------------------------------------------------------------------------------
Document 49:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: 3115–3119.
[4] Christopher Clark and Matt Gardner. 2017. Simple and effective multi-paragraph
readin...
--------------------------------------------------------------------------------
Document 50:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: ciation for Computational Linguistics: EMNLP 2023. 7349–7360.
[9] Kilem L Gwet. 2011. On the Krippen...
--------------------------------------------------------------------------------
Document 51:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: questions. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
6529–6537.
[13...
--------------------------------------------------------------------------------
Document 52:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: [16] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alb...
--------------------------------------------------------------------------------
Document 53:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: 2022. Ptau: Prompt tuning for attributing unanswerable questions. In Proceedings
of the 45th Interna...
--------------------------------------------------------------------------------
Document 54:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Answer Networks for Machine Reading Comprehension. In Proceedings of the
56th Annual Meeting of the ...
--------------------------------------------------------------------------------
Document 55:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Majumder, and Li Deng. 2016. Ms marco: A human-generated machine reading
comprehension dataset. (201...
--------------------------------------------------------------------------------
Document 56:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822 (2018).
[30] Pranav Rajpurkar, Jia...
--------------------------------------------------------------------------------
Document 57:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: 7th CCF International Conference, NLPCC 2018, Hohhot, China, August 26–30, 2018,
Proceedings, Part I...
--------------------------------------------------------------------------------
Document 58:
Source: docs/pdfs\paper.pdf
Type: Unknown
Content Preview: [36] Changchang Zeng, Shaobo Li, Qin Li, Jie Hu, and Jianjun Hu. 2020. A survey
on machine reading c...
--------------------------------------------------------------------------------
Document 59:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: Julien Serbanescu
437-260-3435 | [email protected] | linkedin.com/in/julien-serbanescu-6ba52a241 ...
--------------------------------------------------------------------------------
Document 60:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: Innovation/Creativity, Technical Communication, Mentoring
Education
Computer Engineering Co-op Major...
--------------------------------------------------------------------------------
Document 61:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: on publications. /external-link-altUtilized various NLP methods such as NLTK and SpaCy in Python to ...
--------------------------------------------------------------------------------
Document 62:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: application (Windows EXE) for cybersecurity threat detection and testing
Organizations
Guelph AI Clu...
--------------------------------------------------------------------------------
Document 63:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: β€’ /external-link-altLed a team to develop an AI assistant inspired by Jarvis from Iron Man, ensuring...
--------------------------------------------------------------------------------
Document 64:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: β€’ Developing robotics software using Docker and Linux, implementing Python-based control for Webots
...
--------------------------------------------------------------------------------
Document 65:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: codes and provide medicine information, working on backend, delegating frontend and bridging
β€’ /exte...
--------------------------------------------------------------------------------
Document 66:
Source: docs/pdfs\resume.pdf
Type: Unknown
Content Preview: with a ReactJS frontend dashboard for configuring and managing academic research projects
GAN to Gen...
--------------------------------------------------------------------------------
Document 67:
Source: BinThere.ai.m4a
Type: audio_transcription
Content Preview: All right, so today we're going to be quickly demoing binthere.ai. Now, what this does, it will det...
--------------------------------------------------------------------------------
Document 68:
Source: BinThere.ai.m4a
Type: audio_transcription
Content Preview: list it as biodegradable piece. So if I lower it down just because it's getting the white backgroun...
--------------------------------------------------------------------------------
Document 69:
Source: BinThere.ai.m4a
Type: audio_transcription
Content Preview: This is our new max score. And then as I listed there, and then it says it typically goes in a comp...
--------------------------------------------------------------------------------
Document 70:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: This is the user interface review of Cynthia, which is a service that makes research papers smarter...
--------------------------------------------------------------------------------
Document 71:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: load in certain fragments of other papers that have relevant pieces of information to what exactly...
--------------------------------------------------------------------------------
Document 72:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: machinery reading comprehension in order to find user sentiment. Something like that. And then we...
--------------------------------------------------------------------------------
Document 73:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: be another tool that the model context protocol system using and topic would actually be able to e...
--------------------------------------------------------------------------------
Document 74:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: to use. And it helps just make research smarter, more efficient, and better for users overall. No...
--------------------------------------------------------------------------------
Document 75:
Source: Synthia by Nuvela-AI.m4a
Type: audio_transcription
Content Preview: on our existing formatted proxy late-tech code. So that's my overview for our Cynthia front-end or...
--------------------------------------------------------------------------------