Spaces:
Sleeping
Sleeping
Document 0: | |
Source: https://julien-ser.github.io/JulienSerbanescu/ | |
Type: Unknown | |
Content Preview: Julien Serbanescu | |
Julien Serbanescu... | |
-------------------------------------------------------------------------------- | |
Document 1: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: UnAnswGen: A Systematic Approach for Generating | |
Unanswerable Questions in Machine Reading Comprehens... | |
-------------------------------------------------------------------------------- | |
Document 2: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Unlike existing datasets like SQuAD2.0, which do not account for | |
the reasons behind question unanswe... | |
-------------------------------------------------------------------------------- | |
Document 3: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: query reformulation. The resulting UnAnswGen dataset and asso- | |
ciated software workflow are made pub... | |
-------------------------------------------------------------------------------- | |
Document 4: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: on the first page. Copyrights for components of this work owned by others than the | |
author(s) must be... | |
-------------------------------------------------------------------------------- | |
Document 5: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Development in Information Retrieval in the Asia Pacific Region (SIGIR-AP | |
β24), December 9β12, 2024,... | |
-------------------------------------------------------------------------------- | |
Document 6: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: should avoid responding rather than making uncertain guesses, | |
demonstrating their language comprehen... | |
-------------------------------------------------------------------------------- | |
Document 7: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: systems advance to meet the complexity of real-world information | |
needs, there is an increasing deman... | |
-------------------------------------------------------------------------------- | |
Document 8: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: SIGIR-AP β24, December 9β12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb... | |
-------------------------------------------------------------------------------- | |
Document 9: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: SQuAD2-CR | |
[17] Wikip | |
edia Cr | |
owdsourcing (86,821 | |
- 43,498) 6 [19] 2020 | |
Dur | |
eader [11] Chinese | |
search... | |
-------------------------------------------------------------------------------- | |
Document 10: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: instance, it contains only 3,350 unanswerable questions labeled | |
with No Information. Moreover, as th... | |
-------------------------------------------------------------------------------- | |
Document 11: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: ing unanswerable questions and enables the exploration of various | |
causes of unanswerability. The onl... | |
-------------------------------------------------------------------------------- | |
Document 12: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: unanswerable questions into answerable ones. | |
To develop a multi-label MRC dataset with unanswerable ... | |
-------------------------------------------------------------------------------- | |
Document 13: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: mation for each input question. Second, the generated candidate | |
unanswerable questions are evaluated... | |
-------------------------------------------------------------------------------- | |
Document 14: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: The advantages of our work are twofold: (1) Our implementation | |
of the proposed software workflow all... | |
-------------------------------------------------------------------------------- | |
Document 15: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: of SQuAD2.0 that includes multi-labeled unanswerable questions. | |
Figure 1 presents the overview of ou... | |
-------------------------------------------------------------------------------- | |
Document 16: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens... | |
-------------------------------------------------------------------------------- | |
Document 17: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: linguistic dimensions such as entity swap, number swap, negation, | |
antonym, mutual exclusion, and no ... | |
-------------------------------------------------------------------------------- | |
Document 18: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: passage, and its candidate unanswerable questions. We have imple- | |
mented and integrated a comprehens... | |
-------------------------------------------------------------------------------- | |
Document 19: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: placement: For each entity in the input answerable question, we | |
replace it with another entity of th... | |
-------------------------------------------------------------------------------- | |
Document 20: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: corresponding context. | |
Number Swap. Number Swap involves modifying a question to | |
potentially render ... | |
-------------------------------------------------------------------------------- | |
Document 21: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Time magazine named her one of the most 100 influential people of the | |
century? could be Time magazin... | |
-------------------------------------------------------------------------------- | |
Document 22: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: (2) Replacement: Replace each identified word with its antonym, | |
ensuring the modified question remai... | |
-------------------------------------------------------------------------------- | |
Document 23: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: SIGIR-AP β24, December 9β12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb... | |
-------------------------------------------------------------------------------- | |
Document 24: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: of her music?, utilizing the Detection and Removal approach might | |
lead to a question such as BeyoncΓ©... | |
-------------------------------------------------------------------------------- | |
Document 25: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: formation available in the given context, the question becomes | |
inherently unanswerable. For instance... | |
-------------------------------------------------------------------------------- | |
Document 26: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: No Information. Similar to [33], to modify the original answer- | |
able questions by considering this c... | |
-------------------------------------------------------------------------------- | |
Document 27: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: California is also home to a large homegrown surf and skateboard cul- | |
ture.... This method ensures t... | |
-------------------------------------------------------------------------------- | |
Document 28: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: ππ , and for each candidate unanswerable question (ππ,ππ ) βπΆππ , we | |
conduct the following evaluatio... | |
-------------------------------------------------------------------------------- | |
Document 29: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: ππ , denoted as πβ² | |
π , to πππ , and attribute ππ as the reason for the | |
unanswerability of πβ² | |
π . | |
The... | |
-------------------------------------------------------------------------------- | |
Document 30: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: are answerable. This dataset, developed through crowdsourcing, | |
consists of a training set with 130,3... | |
-------------------------------------------------------------------------------- | |
Document 31: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: swerable candidate questions from a single modification process. | |
Consequently, from the 86,821 answe... | |
-------------------------------------------------------------------------------- | |
Document 32: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens... | |
-------------------------------------------------------------------------------- | |
Document 33: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: ele | |
ctra-base-squad2 74.8 84.7 84.7 67.9 87.8 93.5 72.2 81.6 89.9 | |
r | |
oberta-large-squad 78.7 90 90 69... | |
-------------------------------------------------------------------------------- | |
Document 34: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: questions by returning a null or empty string when no appropri- | |
ate answer is found within the conte... | |
-------------------------------------------------------------------------------- | |
Document 35: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: score indicating the modelβs certainty in its provided answer. For | |
unanswerable questions, these mod... | |
-------------------------------------------------------------------------------- | |
Document 36: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Table 4: Statistics on UnAnswGen dataset. | |
Unansw | |
erability Classes # | |
of Questions Per | |
centage A | |
vera... | |
-------------------------------------------------------------------------------- | |
Document 37: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: of the final unanswerable question set. Specifically, questions from | |
the Negation category account f... | |
-------------------------------------------------------------------------------- | |
Document 38: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: under the Negation label, 31.95 unanswerable questions under the | |
Antonym label, and only 2.6 unanswe... | |
-------------------------------------------------------------------------------- | |
Document 39: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: indicates that the question is completely unrelated to the context, | |
whereas a score of 1 indicates s... | |
-------------------------------------------------------------------------------- | |
Document 40: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: SIGIR-AP β24, December 9β12, 2024, Tokyo, Japan Hadiseh Moradisani, Fattane Zarrinkalam, Julien Serb... | |
-------------------------------------------------------------------------------- | |
Document 41: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: SQuAD2-CR+UnAnsw | |
Gen 71.93 71.93 92.48 96.09 51.43 58.27 46.83 63.78 69.17 81.77 64.86 78.69 86.8 92... | |
-------------------------------------------------------------------------------- | |
Document 42: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: to evaluate the UnAnswerGen dataset against these criteria. Table | |
6 presents the results of Krippend... | |
-------------------------------------------------------------------------------- | |
Document 43: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: CR, which already includes multi-class labeling of unanswerable | |
questions, and (2) the SQuAD2-CR tra... | |
-------------------------------------------------------------------------------- | |
Document 44: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: underwent training on both the enhanced SQuAD2.0+ UnAnswGen | |
and the original SQuAD2-CR datasets, wit... | |
-------------------------------------------------------------------------------- | |
Document 45: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: BERTa, and 1% for Electra were observed. The balanced dataset | |
successfully mitigates issues related ... | |
-------------------------------------------------------------------------------- | |
Document 46: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: hanced MRC datasets, with a focus on including multi-label unan- | |
swerable questions. We have develop... | |
-------------------------------------------------------------------------------- | |
Document 47: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: flow to enrich other datasets, such as HotPotQA [35] and Natural | |
Questions [16], with multi-label un... | |
-------------------------------------------------------------------------------- | |
Document 48: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: UnAnswGen: A Systematic Approach for Generating Unanswerable Questions in Machine Reading Comprehens... | |
-------------------------------------------------------------------------------- | |
Document 49: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: 3115β3119. | |
[4] Christopher Clark and Matt Gardner. 2017. Simple and effective multi-paragraph | |
readin... | |
-------------------------------------------------------------------------------- | |
Document 50: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: ciation for Computational Linguistics: EMNLP 2023. 7349β7360. | |
[9] Kilem L Gwet. 2011. On the Krippen... | |
-------------------------------------------------------------------------------- | |
Document 51: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: questions. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. | |
6529β6537. | |
[13... | |
-------------------------------------------------------------------------------- | |
Document 52: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: [16] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur | |
Parikh, Chris Alb... | |
-------------------------------------------------------------------------------- | |
Document 53: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: 2022. Ptau: Prompt tuning for attributing unanswerable questions. In Proceedings | |
of the 45th Interna... | |
-------------------------------------------------------------------------------- | |
Document 54: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Answer Networks for Machine Reading Comprehension. In Proceedings of the | |
56th Annual Meeting of the ... | |
-------------------------------------------------------------------------------- | |
Document 55: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Majumder, and Li Deng. 2016. Ms marco: A human-generated machine reading | |
comprehension dataset. (201... | |
-------------------------------------------------------------------------------- | |
Document 56: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822 (2018). | |
[30] Pranav Rajpurkar, Jia... | |
-------------------------------------------------------------------------------- | |
Document 57: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: 7th CCF International Conference, NLPCC 2018, Hohhot, China, August 26β30, 2018, | |
Proceedings, Part I... | |
-------------------------------------------------------------------------------- | |
Document 58: | |
Source: docs/pdfs\paper.pdf | |
Type: Unknown | |
Content Preview: [36] Changchang Zeng, Shaobo Li, Qin Li, Jie Hu, and Jianjun Hu. 2020. A survey | |
on machine reading c... | |
-------------------------------------------------------------------------------- | |
Document 59: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: Julien Serbanescu | |
437-260-3435 | [email protected] | linkedin.com/in/julien-serbanescu-6ba52a241 ... | |
-------------------------------------------------------------------------------- | |
Document 60: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: Innovation/Creativity, Technical Communication, Mentoring | |
Education | |
Computer Engineering Co-op Major... | |
-------------------------------------------------------------------------------- | |
Document 61: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: on publications. /external-link-altUtilized various NLP methods such as NLTK and SpaCy in Python to ... | |
-------------------------------------------------------------------------------- | |
Document 62: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: application (Windows EXE) for cybersecurity threat detection and testing | |
Organizations | |
Guelph AI Clu... | |
-------------------------------------------------------------------------------- | |
Document 63: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: β’ /external-link-altLed a team to develop an AI assistant inspired by Jarvis from Iron Man, ensuring... | |
-------------------------------------------------------------------------------- | |
Document 64: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: β’ Developing robotics software using Docker and Linux, implementing Python-based control for Webots | |
... | |
-------------------------------------------------------------------------------- | |
Document 65: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: codes and provide medicine information, working on backend, delegating frontend and bridging | |
β’ /exte... | |
-------------------------------------------------------------------------------- | |
Document 66: | |
Source: docs/pdfs\resume.pdf | |
Type: Unknown | |
Content Preview: with a ReactJS frontend dashboard for configuring and managing academic research projects | |
GAN to Gen... | |
-------------------------------------------------------------------------------- | |
Document 67: | |
Source: BinThere.ai.m4a | |
Type: audio_transcription | |
Content Preview: All right, so today we're going to be quickly demoing binthere.ai. Now, what this does, it will det... | |
-------------------------------------------------------------------------------- | |
Document 68: | |
Source: BinThere.ai.m4a | |
Type: audio_transcription | |
Content Preview: list it as biodegradable piece. So if I lower it down just because it's getting the white backgroun... | |
-------------------------------------------------------------------------------- | |
Document 69: | |
Source: BinThere.ai.m4a | |
Type: audio_transcription | |
Content Preview: This is our new max score. And then as I listed there, and then it says it typically goes in a comp... | |
-------------------------------------------------------------------------------- | |
Document 70: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: This is the user interface review of Cynthia, which is a service that makes research papers smarter... | |
-------------------------------------------------------------------------------- | |
Document 71: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: load in certain fragments of other papers that have relevant pieces of information to what exactly... | |
-------------------------------------------------------------------------------- | |
Document 72: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: machinery reading comprehension in order to find user sentiment. Something like that. And then we... | |
-------------------------------------------------------------------------------- | |
Document 73: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: be another tool that the model context protocol system using and topic would actually be able to e... | |
-------------------------------------------------------------------------------- | |
Document 74: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: to use. And it helps just make research smarter, more efficient, and better for users overall. No... | |
-------------------------------------------------------------------------------- | |
Document 75: | |
Source: Synthia by Nuvela-AI.m4a | |
Type: audio_transcription | |
Content Preview: on our existing formatted proxy late-tech code. So that's my overview for our Cynthia front-end or... | |
-------------------------------------------------------------------------------- | |