Spaces:
Runtime error
Runtime error
File size: 5,105 Bytes
3911a99 1e1a292 3911a99 5fef1f4 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 1e1a292 3911a99 a8ce530 1e1a292 a8ce530 5fef1f4 1e1a292 a8ce530 1e1a292 5fef1f4 14304cb 1e1a292 5fef1f4 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 1e1a292 a8ce530 5fef1f4 a8ce530 1e1a292 3911a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import torch
from controlnet_aux import HEDdetector
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler,
)
from PIL import Image
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2-1",
]
controlnet_hed_model_list = [
"lllyasviel/sd-controlnet-hed",
"thibaud/controlnet-sd21-hed-diffusers",
]
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
stable_negative_prompt_list = ["bad, ugly", "deformed"]
data_list = [
"data/test.png",
]
def controlnet_hed(image_path: str, controlnet_hed_model_path: str):
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
image = Image.open(image_path)
image = hed(image)
controlnet = ControlNetModel.from_pretrained(
controlnet_hed_model_path, torch_dtype=torch.float16
)
return controlnet, image
def stable_diffusion_controlnet_hed(
image_path: str,
stable_model_path: str,
controlnet_hed_model_path: str,
prompt: str,
negative_prompt: str,
guidance_scale: int,
num_inference_step: int,
):
controlnet, image = controlnet_hed(
image_path=image_path,
controlnet_hed_model_path=controlnet_hed_model_path,
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
pretrained_model_name_or_path=stable_model_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
pipe.to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
output = pipe(
prompt=prompt,
image=image,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
).images
return output[0]
def stable_diffusion_controlnet_hed_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
controlnet_hed_image_file = gr.Image(
type="filepath", label="Image"
)
controlnet_hed_stable_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Stable Model Id",
)
controlnet_hed_model_id = gr.Dropdown(
choices=controlnet_hed_model_list,
value=controlnet_hed_model_list[1],
label="ControlNet Model Id",
)
controlnet_hed_prompt = gr.Textbox(
lines=1, value=stable_prompt_list[0], label="Prompt"
)
controlnet_hed_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label="Negative Prompt",
)
with gr.Accordion("Advanced Options", open=False):
controlnet_hed_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
controlnet_hed_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
controlnet_hed_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Image(label="Output")
gr.Examples(
fn=stable_diffusion_controlnet_hed,
examples=[
[
data_list[0],
stable_model_list[0],
controlnet_hed_model_list[0],
stable_prompt_list[0],
stable_negative_prompt_list[0],
7.5,
50,
]
],
inputs=[
controlnet_hed_image_file,
controlnet_hed_stable_model_id,
controlnet_hed_model_id,
controlnet_hed_prompt,
controlnet_hed_negative_prompt,
controlnet_hed_guidance_scale,
controlnet_hed_num_inference_step,
],
outputs=[output_image],
cache_examples=False,
label="ControlNet HED Example",
)
controlnet_hed_predict.click(
fn=stable_diffusion_controlnet_hed,
inputs=[
controlnet_hed_image_file,
controlnet_hed_stable_model_id,
controlnet_hed_model_id,
controlnet_hed_prompt,
controlnet_hed_negative_prompt,
controlnet_hed_guidance_scale,
controlnet_hed_num_inference_step,
],
outputs=[output_image],
)
|