Update app.py
Browse files
app.py
CHANGED
@@ -3,86 +3,64 @@ import wave
|
|
3 |
import numpy as np
|
4 |
from io import BytesIO
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
from piper import PiperVoice
|
7 |
from transformers import pipeline
|
8 |
|
9 |
-
#
|
10 |
-
# gradio for creating the web interface,
|
11 |
-
# wave for handling WAV audio format,
|
12 |
-
# numpy for numerical operations,
|
13 |
-
# BytesIO for in-memory byte handling,
|
14 |
-
# huggingface_hub for downloading models from the Hugging Face Hub,
|
15 |
-
# PiperVoice for the text-to-speech functionality,
|
16 |
-
# pipeline from transformers for the NSFW classifier.
|
17 |
-
|
18 |
-
# Load the NSFW classifier model using Hugging Face's pipeline
|
19 |
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier")
|
20 |
|
21 |
def synthesize_speech(text):
|
22 |
# Check for NSFW content using the classifier
|
23 |
nsfw_result = nsfw_detector(text)
|
24 |
-
# Extract the label and score from the result
|
25 |
label = nsfw_result[0]['label']
|
26 |
score = nsfw_result[0]['score']
|
27 |
|
28 |
-
# First, check if the input text contains NSFW content.
|
29 |
-
#nsfw_result = nsfw_detector(text)
|
30 |
if label == 'NSFW' and score >= 0.95:
|
31 |
-
# Download and read the error audio file
|
32 |
error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav")
|
33 |
-
with open(error_audio_path, 'rb') as error_audio_file:
|
34 |
-
error_audio = error_audio_file.read()
|
35 |
-
# Return the error audio and a warning message
|
36 |
-
return error_audio, "NSFW content detected. Cannot process."
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx")
|
41 |
config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__1234_model.onnx.json")
|
42 |
-
|
43 |
-
# Load the PiperVoice model for speech synthesis.
|
44 |
voice = PiperVoice.load(model_path, config_path)
|
45 |
-
|
46 |
-
# Create a BytesIO buffer to hold the synthesized WAV file in memory.
|
47 |
buffer = BytesIO()
|
48 |
with wave.open(buffer, 'wb') as wav_file:
|
49 |
-
# Set WAV file properties: sample rate, bit depth, and mono channel.
|
50 |
wav_file.setframerate(voice.config.sample_rate)
|
51 |
-
wav_file.setsampwidth(2)
|
52 |
-
wav_file.setnchannels(1)
|
53 |
-
|
54 |
-
# Use the PiperVoice model to synthesize speech from the text.
|
55 |
voice.synthesize(text, wav_file)
|
56 |
|
57 |
-
# Convert the buffer content to a NumPy array, then to bytes for Gradio output.
|
58 |
buffer.seek(0)
|
59 |
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
|
60 |
return audio_data.tobytes(), None
|
61 |
|
62 |
-
#
|
63 |
with gr.Blocks(theme=gr.themes.Base()) as blocks:
|
64 |
-
# Create a user-friendly markdown title and description.
|
65 |
gr.Markdown("# Text to Speech Synthesizer")
|
66 |
gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.")
|
67 |
-
|
68 |
-
# Define Gradio interface components: input textbox, audio output, and output textbox.
|
69 |
input_text = gr.Textbox(label="Input Text")
|
70 |
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
|
71 |
-
output_text = gr.Textbox(label="Output Text", visible=True)
|
|
|
72 |
|
73 |
-
# Define a function to process the input text and produce outputs.
|
74 |
def process_and_output(text):
|
75 |
audio, message = synthesize_speech(text)
|
76 |
if message:
|
77 |
-
|
78 |
-
return None, message
|
79 |
else:
|
80 |
-
# Otherwise, return the synthesized audio and None for the message.
|
81 |
return audio, None
|
82 |
|
83 |
-
# Link the processing function to the Gradio interface button.
|
84 |
-
submit_button = gr.Button("Synthesize")
|
85 |
submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text])
|
86 |
|
87 |
-
# Launch the Gradio web application.
|
88 |
blocks.launch()
|
|
|
3 |
import numpy as np
|
4 |
from io import BytesIO
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
from piper import PiperVoice
|
7 |
from transformers import pipeline
|
8 |
|
9 |
+
# Load the NSFW classifier model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier")
|
11 |
|
12 |
def synthesize_speech(text):
|
13 |
# Check for NSFW content using the classifier
|
14 |
nsfw_result = nsfw_detector(text)
|
|
|
15 |
label = nsfw_result[0]['label']
|
16 |
score = nsfw_result[0]['score']
|
17 |
|
|
|
|
|
18 |
if label == 'NSFW' and score >= 0.95:
|
|
|
19 |
error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav")
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Read the error audio file
|
22 |
+
try:
|
23 |
+
with wave.open(error_audio_path, 'rb') as error_audio_file:
|
24 |
+
frames = error_audio_file.readframes(error_audio_file.getnframes())
|
25 |
+
error_audio_data = np.frombuffer(frames, dtype=np.int16).tobytes()
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error reading audio file: {e}")
|
28 |
+
return None, "Error in processing audio file."
|
29 |
+
|
30 |
+
return error_audio_data, "NSFW content detected. Cannot process."
|
31 |
+
|
32 |
model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx")
|
33 |
config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__1234_model.onnx.json")
|
34 |
+
|
|
|
35 |
voice = PiperVoice.load(model_path, config_path)
|
36 |
+
|
|
|
37 |
buffer = BytesIO()
|
38 |
with wave.open(buffer, 'wb') as wav_file:
|
|
|
39 |
wav_file.setframerate(voice.config.sample_rate)
|
40 |
+
wav_file.setsampwidth(2)
|
41 |
+
wav_file.setnchannels(1)
|
|
|
|
|
42 |
voice.synthesize(text, wav_file)
|
43 |
|
|
|
44 |
buffer.seek(0)
|
45 |
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
|
46 |
return audio_data.tobytes(), None
|
47 |
|
48 |
+
# Gradio Interface
|
49 |
with gr.Blocks(theme=gr.themes.Base()) as blocks:
|
|
|
50 |
gr.Markdown("# Text to Speech Synthesizer")
|
51 |
gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.")
|
|
|
|
|
52 |
input_text = gr.Textbox(label="Input Text")
|
53 |
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
|
54 |
+
output_text = gr.Textbox(label="Output Text", visible=True)
|
55 |
+
submit_button = gr.Button("Synthesize")
|
56 |
|
|
|
57 |
def process_and_output(text):
|
58 |
audio, message = synthesize_speech(text)
|
59 |
if message:
|
60 |
+
return audio, message
|
|
|
61 |
else:
|
|
|
62 |
return audio, None
|
63 |
|
|
|
|
|
64 |
submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text])
|
65 |
|
|
|
66 |
blocks.launch()
|