piper-tts / piper /__main__.py
DLI-SLQ's picture
Upload 9 files
35f6708
raw
history blame
5.11 kB
import argparse
import logging
import sys
import time
import wave
from pathlib import Path
from typing import Any, Dict
from . import PiperVoice
from .download import ensure_voice_exists, find_voice, get_voices
_FILE = Path(__file__)
_DIR = _FILE.parent
_LOGGER = logging.getLogger(_FILE.stem)
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", required=True, help="Path to Onnx model file")
parser.add_argument("-c", "--config", help="Path to model config file")
parser.add_argument(
"-f",
"--output-file",
"--output_file",
help="Path to output WAV file (default: stdout)",
)
parser.add_argument(
"-d",
"--output-dir",
"--output_dir",
help="Path to output directory (default: cwd)",
)
parser.add_argument(
"--output-raw",
"--output_raw",
action="store_true",
help="Stream raw audio to stdout",
)
#
parser.add_argument("-s", "--speaker", type=int, help="Id of speaker (default: 0)")
parser.add_argument(
"--length-scale", "--length_scale", type=float, help="Phoneme length"
)
parser.add_argument(
"--noise-scale", "--noise_scale", type=float, help="Generator noise"
)
parser.add_argument(
"--noise-w", "--noise_w", type=float, help="Phoneme width noise"
)
#
parser.add_argument("--cuda", action="store_true", help="Use GPU")
#
parser.add_argument(
"--sentence-silence",
"--sentence_silence",
type=float,
default=0.0,
help="Seconds of silence after each sentence",
)
#
parser.add_argument(
"--data-dir",
"--data_dir",
action="append",
default=[str(Path.cwd())],
help="Data directory to check for downloaded models (default: current directory)",
)
parser.add_argument(
"--download-dir",
"--download_dir",
help="Directory to download voices into (default: first data dir)",
)
#
parser.add_argument(
"--update-voices",
action="store_true",
help="Download latest voices.json during startup",
)
#
parser.add_argument(
"--debug", action="store_true", help="Print DEBUG messages to console"
)
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO)
_LOGGER.debug(args)
if not args.download_dir:
# Download to first data directory by default
args.download_dir = args.data_dir[0]
# Download voice if file doesn't exist
model_path = Path(args.model)
if not model_path.exists():
# Load voice info
voices_info = get_voices(args.download_dir, update_voices=args.update_voices)
# Resolve aliases for backwards compatibility with old voice names
aliases_info: Dict[str, Any] = {}
for voice_info in voices_info.values():
for voice_alias in voice_info.get("aliases", []):
aliases_info[voice_alias] = {"_is_alias": True, **voice_info}
voices_info.update(aliases_info)
ensure_voice_exists(args.model, args.data_dir, args.download_dir, voices_info)
args.model, args.config = find_voice(args.model, args.data_dir)
# Load voice
voice = PiperVoice.load(args.model, config_path=args.config, use_cuda=args.cuda)
synthesize_args = {
"speaker_id": args.speaker,
"length_scale": args.length_scale,
"noise_scale": args.noise_scale,
"noise_w": args.noise_w,
"sentence_silence": args.sentence_silence,
}
if args.output_raw:
# Read line-by-line
for line in sys.stdin:
line = line.strip()
if not line:
continue
# Write raw audio to stdout as its produced
audio_stream = voice.synthesize_stream_raw(line, **synthesize_args)
for audio_bytes in audio_stream:
sys.stdout.buffer.write(audio_bytes)
sys.stdout.buffer.flush()
elif args.output_dir:
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Read line-by-line
for line in sys.stdin:
line = line.strip()
if not line:
continue
wav_path = output_dir / f"{time.monotonic_ns()}.wav"
with wave.open(str(wav_path), "wb") as wav_file:
voice.synthesize(line, wav_file, **synthesize_args)
_LOGGER.info("Wrote %s", wav_path)
else:
# Read entire input
text = sys.stdin.read()
if (not args.output_file) or (args.output_file == "-"):
# Write to stdout
with wave.open(sys.stdout.buffer, "wb") as wav_file:
voice.synthesize(text, wav_file, **synthesize_args)
else:
# Write to file
with wave.open(args.output_file, "wb") as wav_file:
voice.synthesize(text, wav_file, **synthesize_args)
if __name__ == "__main__":
main()