piper-tts / app.py
DLI-SLQ's picture
hide footer
581e370 verified
raw
history blame
2.66 kB
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
from transformers import pipeline
# Load the NSFW classifier model
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier")
def synthesize_speech(text):
# Check for NSFW content using the classifier
nsfw_result = nsfw_detector(text)
label = nsfw_result[0]['label']
score = nsfw_result[0]['score']
if label == 'NSFW' and score >= 0.95:
error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav")
# Read the error audio file
try:
with wave.open(error_audio_path, 'rb') as error_audio_file:
frames = error_audio_file.readframes(error_audio_file.getnframes())
error_audio_data = np.frombuffer(frames, dtype=np.int16).tobytes()
except Exception as e:
print(f"Error reading audio file: {e}")
return None, "Error in processing audio file."
return error_audio_data, "NSFW content detected. Cannot process."
model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx")
config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx.json")
voice = PiperVoice.load(model_path, config_path)
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2)
wav_file.setnchannels(1)
voice.synthesize(text, wav_file, sentence_silence=0.75, length_scale=1.2)
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes(), None
# Gradio Interface
with gr.Blocks(theme=gr.themes.Base(),css="footer {visibility: hidden}") as blocks:
gr.Markdown("# Text to Speech Synthesizer")
gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.")
input_text = gr.Textbox(label="Input Text")
output_audio = gr.Audio(label="Synthesized Speech", type="numpy", show_download_button=False)
output_text = gr.Textbox(label="Output Text", visible=False)
submit_button = gr.Button("Synthesize")
def process_and_output(text):
audio, message = synthesize_speech(text)
if message:
return audio, message
else:
return audio, None
submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text])
blocks.launch()