|
import gradio as gr |
|
import wave |
|
import numpy as np |
|
from io import BytesIO |
|
from huggingface_hub import hf_hub_download |
|
from piper import PiperVoice |
|
from transformers import pipeline |
|
|
|
|
|
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier") |
|
|
|
def synthesize_speech(text): |
|
|
|
nsfw_result = nsfw_detector(text) |
|
label = nsfw_result[0]['label'] |
|
score = nsfw_result[0]['score'] |
|
|
|
if label == 'NSFW' and score >= 0.95: |
|
error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav") |
|
|
|
|
|
try: |
|
with wave.open(error_audio_path, 'rb') as error_audio_file: |
|
frames = error_audio_file.readframes(error_audio_file.getnframes()) |
|
error_audio_data = np.frombuffer(frames, dtype=np.int16).tobytes() |
|
except Exception as e: |
|
print(f"Error reading audio file: {e}") |
|
return None, "Error in processing audio file." |
|
|
|
return error_audio_data, "NSFW content detected. Cannot process." |
|
|
|
model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx") |
|
config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx.json") |
|
|
|
voice = PiperVoice.load(model_path, config_path) |
|
|
|
buffer = BytesIO() |
|
with wave.open(buffer, 'wb') as wav_file: |
|
wav_file.setframerate(voice.config.sample_rate) |
|
wav_file.setsampwidth(2) |
|
wav_file.setnchannels(1) |
|
voice.synthesize(text, wav_file, sentence_silence=0.75, length_scale=1.2) |
|
|
|
buffer.seek(0) |
|
audio_data = np.frombuffer(buffer.read(), dtype=np.int16) |
|
return audio_data.tobytes(), None |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Base(),css="footer {visibility: hidden}") as blocks: |
|
gr.Markdown("# Text to Speech Synthesizer") |
|
gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.") |
|
input_text = gr.Textbox(label="Input Text") |
|
output_audio = gr.Audio(label="Synthesized Speech", type="numpy", show_download_button=False) |
|
output_text = gr.Textbox(label="Output Text", visible=False) |
|
submit_button = gr.Button("Synthesize") |
|
|
|
|
|
def process_and_output(text): |
|
audio, message = synthesize_speech(text) |
|
if message: |
|
return audio, message |
|
else: |
|
return audio, None |
|
|
|
submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text]) |
|
|
|
blocks.launch() |
|
|