File size: 2,216 Bytes
4e63be7 2e9ef73 4e63be7 a5300a9 99fb0c5 4e63be7 f618670 4e63be7 a5300a9 4e63be7 99fb0c5 985726e 99fb0c5 985726e 99fb0c5 4e63be7 985726e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
from transformers import pipeline
# Load the NSFW classifier model
nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier")
def synthesize_speech(text):
# Check for NSFW content
nsfw_result = nsfw_detector(text)
if nsfw_result[0]['label'] == 'NSFW':
return "NSFW content detected. Cannot process.", None
model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx")
config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx.json")
voice = PiperVoice.load(model_path, config_path)
# Create an in-memory buffer for the WAV file
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2) # 16-bit
wav_file.setnchannels(1) # mono
# Synthesize speech
voice.synthesize(text, wav_file)
# Convert buffer to NumPy array for Gradio output
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes(), None
# Gradio Interface
with gr.Blocks(theme=gr.themes.Base()) as blocks:
gr.Markdown("# Text to Speech Synthesizer")
gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.")
input_text = gr.Textbox(label="Input Text")
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
output_text = gr.Textbox(label="Output Text", visible=True) # Make this visible for error messages
submit_button = gr.Button("Synthesize")
def process_and_output(text):
audio, message = synthesize_speech(text)
if message:
return None, message # Return None for audio and the error message
else:
return audio, None # Return the audio data and None for the message
submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text])
# Run the app
blocks.launch()
|