Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,14 @@ import os
|
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
5 |
-
# Load HF Token from environment variables
|
6 |
hf_token = os.getenv("HF_TOKEN")
|
7 |
if not hf_token:
|
8 |
raise ValueError("HF_TOKEN is not set in environment variables!")
|
9 |
|
10 |
-
|
11 |
client = InferenceClient(model="huihui-ai/Llama-3.3-70B-Instruct-abliterated", token=hf_token)
|
12 |
|
|
|
13 |
def respond(
|
14 |
message,
|
15 |
history: list[tuple[str, str]],
|
@@ -21,33 +21,36 @@ def respond(
|
|
21 |
# Prepare messages for the API
|
22 |
messages = [{"role": "system", "content": system_message}]
|
23 |
|
24 |
-
for
|
25 |
-
if
|
26 |
-
messages.append({"role": "user", "content":
|
27 |
-
if
|
28 |
-
messages.append({"role": "assistant", "content":
|
29 |
|
30 |
messages.append({"role": "user", "content": message})
|
31 |
|
32 |
response = ""
|
33 |
|
34 |
try:
|
35 |
-
#
|
36 |
-
|
37 |
model="huihui-ai/Llama-3.3-70B-Instruct-abliterated",
|
38 |
-
messages=messages,
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"top_p": top_p,
|
43 |
-
},
|
44 |
stream=True,
|
45 |
-
)
|
|
|
|
|
|
|
46 |
token = message.choices[0].delta.content
|
47 |
response += token
|
48 |
yield response
|
|
|
49 |
except Exception as e:
|
50 |
-
yield f"Error: {str(e)}"
|
|
|
51 |
|
52 |
demo = gr.ChatInterface(
|
53 |
respond,
|
|
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
|
|
5 |
hf_token = os.getenv("HF_TOKEN")
|
6 |
if not hf_token:
|
7 |
raise ValueError("HF_TOKEN is not set in environment variables!")
|
8 |
|
9 |
+
|
10 |
client = InferenceClient(model="huihui-ai/Llama-3.3-70B-Instruct-abliterated", token=hf_token)
|
11 |
|
12 |
+
|
13 |
def respond(
|
14 |
message,
|
15 |
history: list[tuple[str, str]],
|
|
|
21 |
# Prepare messages for the API
|
22 |
messages = [{"role": "system", "content": system_message}]
|
23 |
|
24 |
+
for user_msg, assistant_msg in history:
|
25 |
+
if user_msg:
|
26 |
+
messages.append({"role": "user", "content": user_msg})
|
27 |
+
if assistant_msg:
|
28 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
29 |
|
30 |
messages.append({"role": "user", "content": message})
|
31 |
|
32 |
response = ""
|
33 |
|
34 |
try:
|
35 |
+
# Call the chat_completion method with the correct parameters
|
36 |
+
completion = client.chat_completion(
|
37 |
model="huihui-ai/Llama-3.3-70B-Instruct-abliterated",
|
38 |
+
messages=messages,
|
39 |
+
max_tokens=max_tokens,
|
40 |
+
temperature=temperature,
|
41 |
+
top_p=top_p,
|
|
|
|
|
42 |
stream=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Handle streaming responses
|
46 |
+
for message in completion:
|
47 |
token = message.choices[0].delta.content
|
48 |
response += token
|
49 |
yield response
|
50 |
+
|
51 |
except Exception as e:
|
52 |
+
yield f"Error: {str(e)}"
|
53 |
+
|
54 |
|
55 |
demo = gr.ChatInterface(
|
56 |
respond,
|