Ankur Goyal
commited on
Commit
·
8171e8e
1
Parent(s):
6cc15a7
Properly cache pipeline and display
Browse files
app.py
CHANGED
@@ -2,47 +2,46 @@ import os
|
|
2 |
|
3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
|
|
|
|
|
5 |
import streamlit as st
|
6 |
|
7 |
import torch
|
8 |
from docquery.pipeline import get_pipeline
|
9 |
from docquery.document import load_bytes
|
10 |
|
11 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
-
pipeline = get_pipeline(device=device)
|
13 |
-
|
14 |
-
|
15 |
-
def process_document(file, question):
|
16 |
-
# prepare encoder inputs
|
17 |
-
document = load_document(file.name)
|
18 |
-
return pipeline(question=question, **document.context)
|
19 |
-
|
20 |
-
|
21 |
def ensure_list(x):
|
22 |
if isinstance(x, list):
|
23 |
return x
|
24 |
else:
|
25 |
return [x]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
st.title("DocQuery: Query Documents Using NLP")
|
29 |
file = st.file_uploader("Upload a PDF or Image document")
|
30 |
question = st.text_input("QUESTION", "")
|
31 |
|
32 |
-
document = None
|
33 |
-
|
34 |
if file is not None:
|
35 |
col1, col2 = st.columns(2)
|
36 |
|
37 |
document = load_bytes(file, file.name)
|
38 |
col1.image(document.preview, use_column_width=True)
|
39 |
|
40 |
-
if
|
41 |
-
predictions =
|
42 |
|
43 |
-
col2.header("
|
44 |
for p in ensure_list(predictions):
|
45 |
-
col2.subheader(f"{ p['answer'] }: {
|
46 |
|
47 |
|
48 |
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them."
|
|
|
2 |
|
3 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
4 |
|
5 |
+
print("Importing")
|
6 |
+
|
7 |
import streamlit as st
|
8 |
|
9 |
import torch
|
10 |
from docquery.pipeline import get_pipeline
|
11 |
from docquery.document import load_bytes
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def ensure_list(x):
|
14 |
if isinstance(x, list):
|
15 |
return x
|
16 |
else:
|
17 |
return [x]
|
18 |
|
19 |
+
@st.experimental_singleton
|
20 |
+
def construct_pipeline():
|
21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
ret = get_pipeline(device=device)
|
23 |
+
return ret
|
24 |
+
|
25 |
+
@st.cache
|
26 |
+
def run_pipeline(question, document):
|
27 |
+
return construct_pipeline()(question=question, **document.context)
|
28 |
|
29 |
st.title("DocQuery: Query Documents Using NLP")
|
30 |
file = st.file_uploader("Upload a PDF or Image document")
|
31 |
question = st.text_input("QUESTION", "")
|
32 |
|
|
|
|
|
33 |
if file is not None:
|
34 |
col1, col2 = st.columns(2)
|
35 |
|
36 |
document = load_bytes(file, file.name)
|
37 |
col1.image(document.preview, use_column_width=True)
|
38 |
|
39 |
+
if file is not None and question is not None and len(question) > 0:
|
40 |
+
predictions = run_pipeline(question=question, document=document)
|
41 |
|
42 |
+
col2.header("Answers")
|
43 |
for p in ensure_list(predictions):
|
44 |
+
col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)")
|
45 |
|
46 |
|
47 |
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them."
|