Update app.py
Browse files
app.py
CHANGED
@@ -2,57 +2,56 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
3 |
|
4 |
|
5 |
-
title = "
|
6 |
-
description = "
|
7 |
-
um modelo de geração de código Python pré-treinado em um conjunto de dados de docstrings e código Python extraído de notebooks Jupyter disponível em [github-jupyter-text](https://huggingface.co/datasets/codeparrot/github-jupyter-text)."
|
8 |
example = [
|
9 |
-
["
|
10 |
-
["
|
11 |
-
["
|
12 |
]
|
13 |
|
14 |
-
#
|
15 |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code")
|
16 |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code")
|
17 |
|
18 |
-
def
|
19 |
return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n"
|
20 |
|
21 |
-
def
|
22 |
set_seed(seed)
|
23 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
24 |
-
prompt =
|
25 |
-
generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=
|
26 |
return generated_text
|
27 |
|
28 |
|
29 |
iface = gr.Interface(
|
30 |
-
fn=
|
31 |
inputs=[
|
32 |
-
gr.Textbox(label="
|
33 |
gr.inputs.Slider(
|
34 |
minimum=8,
|
35 |
maximum=256,
|
36 |
step=1,
|
37 |
default=8,
|
38 |
-
label="
|
39 |
),
|
40 |
gr.inputs.Slider(
|
41 |
minimum=0,
|
42 |
maximum=2.5,
|
43 |
step=0.1,
|
44 |
default=0.6,
|
45 |
-
label="
|
46 |
),
|
47 |
gr.inputs.Slider(
|
48 |
minimum=0,
|
49 |
maximum=1000,
|
50 |
step=1,
|
51 |
default=42,
|
52 |
-
label="
|
53 |
)
|
54 |
],
|
55 |
-
outputs=gr.Code(label="
|
56 |
examples=example,
|
57 |
layout="horizontal",
|
58 |
theme="peach",
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline
|
3 |
|
4 |
|
5 |
+
title = "Python Code Generator"
|
6 |
+
description = "This is a space to convert English text to Python code using the [codeparrot-small-text-to-code](https://huggingface.co/codeparrot/codeparrot-small-text-to-code) model, a pre-trained Python code generation model trained on a dataset of docstrings and Python code extracted from Jupyter notebooks available at [github-jupyter-text](https://huggingface.co/datasets/codeparrot/github-jupyter-text)."
|
|
|
7 |
example = [
|
8 |
+
["Utility function to calculate the precision of predictions using sklearn metrics", 65, 0.6, 42],
|
9 |
+
["Let's implement a function that calculates the size of a file called filepath", 60, 0.6, 42],
|
10 |
+
["Let's implement the Bubble Sort sorting algorithm in an auxiliary function:", 87, 0.6, 42],
|
11 |
]
|
12 |
|
13 |
+
# Change the model to the pre-trained model
|
14 |
tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-text-to-code")
|
15 |
model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-text-to-code")
|
16 |
|
17 |
+
def create_docstring(gen_prompt):
|
18 |
return "\"\"\"\n" + gen_prompt + "\n\"\"\"\n\n"
|
19 |
|
20 |
+
def generate_code(gen_prompt, max_tokens, temperature=0.6, seed=42):
|
21 |
set_seed(seed)
|
22 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
23 |
+
prompt = create_docstring(gen_prompt)
|
24 |
+
generated_text = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text']
|
25 |
return generated_text
|
26 |
|
27 |
|
28 |
iface = gr.Interface(
|
29 |
+
fn=generate_code,
|
30 |
inputs=[
|
31 |
+
gr.Textbox(label="English instructions", placeholder="Enter English instructions..."),
|
32 |
gr.inputs.Slider(
|
33 |
minimum=8,
|
34 |
maximum=256,
|
35 |
step=1,
|
36 |
default=8,
|
37 |
+
label="Number of tokens to generate",
|
38 |
),
|
39 |
gr.inputs.Slider(
|
40 |
minimum=0,
|
41 |
maximum=2.5,
|
42 |
step=0.1,
|
43 |
default=0.6,
|
44 |
+
label="Temperature",
|
45 |
),
|
46 |
gr.inputs.Slider(
|
47 |
minimum=0,
|
48 |
maximum=1000,
|
49 |
step=1,
|
50 |
default=42,
|
51 |
+
label="Random seed for generation"
|
52 |
)
|
53 |
],
|
54 |
+
outputs=gr.Code(label="Generated Python code", language="python", lines=10),
|
55 |
examples=example,
|
56 |
layout="horizontal",
|
57 |
theme="peach",
|