DEADLOCK007X commited on
Commit
ab7ddd9
·
verified ·
1 Parent(s): e65d0ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -37
app.py CHANGED
@@ -1,47 +1,15 @@
1
- import os
2
- import json
3
  import gradio as gr
4
- from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
- def load_model():
7
- # Use a public, open-source model for code evaluation.
8
- model_name = "Salesforce/codegen-350M-mono"
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForCausalLM.from_pretrained(model_name)
11
- return tokenizer, model
12
-
13
- # Load the model once at startup.
14
- tokenizer, model = load_model()
15
-
16
- def evaluate_model(prompt):
17
- inputs = tokenizer(prompt, return_tensors="pt")
18
- outputs = model.generate(**inputs, max_new_tokens=150)
19
- response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
- try:
21
- result = json.loads(response_text.strip())
22
- except Exception as e:
23
- result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
24
- return result
25
-
26
- def evaluate_code(language, question, code):
27
  if not code.strip():
28
  return "Error: No code provided. Please enter your solution code."
29
-
30
- # Build the prompt for the evaluation model.
31
- prompt = f"""
32
- You are an expert code evaluator.
33
- Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
34
- Language: {language}
35
- Problem: "{question}"
36
- Solution: "{code}"
37
- Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
38
- Do not include any extra text.
39
- """
40
- result = evaluate_model(prompt)
41
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
42
 
43
  iface = gr.Interface(
44
- fn=evaluate_code,
45
  inputs=[
46
  gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
47
  gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),
 
 
 
1
  import gradio as gr
2
+ from tinyllama_inference import evaluate_code
3
 
4
+ def evaluate_interface(language, question, code):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  if not code.strip():
6
  return "Error: No code provided. Please enter your solution code."
7
+ # Here you might choose to use the language input to further tailor the prompt if needed.
8
+ result = evaluate_code(question, code)
 
 
 
 
 
 
 
 
 
 
9
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
10
 
11
  iface = gr.Interface(
12
+ fn=evaluate_interface,
13
  inputs=[
14
  gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
15
  gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),