Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,15 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
|
6 |
-
def
|
7 |
-
# Use a public, open-source model for code evaluation.
|
8 |
-
model_name = "Salesforce/codegen-350M-mono"
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
-
return tokenizer, model
|
12 |
-
|
13 |
-
# Load the model once at startup.
|
14 |
-
tokenizer, model = load_model()
|
15 |
-
|
16 |
-
def evaluate_model(prompt):
|
17 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
18 |
-
outputs = model.generate(**inputs, max_new_tokens=150)
|
19 |
-
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
-
try:
|
21 |
-
result = json.loads(response_text.strip())
|
22 |
-
except Exception as e:
|
23 |
-
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
|
24 |
-
return result
|
25 |
-
|
26 |
-
def evaluate_code(language, question, code):
|
27 |
if not code.strip():
|
28 |
return "Error: No code provided. Please enter your solution code."
|
29 |
-
|
30 |
-
|
31 |
-
prompt = f"""
|
32 |
-
You are an expert code evaluator.
|
33 |
-
Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
|
34 |
-
Language: {language}
|
35 |
-
Problem: "{question}"
|
36 |
-
Solution: "{code}"
|
37 |
-
Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
|
38 |
-
Do not include any extra text.
|
39 |
-
"""
|
40 |
-
result = evaluate_model(prompt)
|
41 |
return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
|
42 |
|
43 |
iface = gr.Interface(
|
44 |
-
fn=
|
45 |
inputs=[
|
46 |
gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
|
47 |
gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from tinyllama_inference import evaluate_code
|
3 |
|
4 |
+
def evaluate_interface(language, question, code):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
if not code.strip():
|
6 |
return "Error: No code provided. Please enter your solution code."
|
7 |
+
# Here you might choose to use the language input to further tailor the prompt if needed.
|
8 |
+
result = evaluate_code(question, code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
|
10 |
|
11 |
iface = gr.Interface(
|
12 |
+
fn=evaluate_interface,
|
13 |
inputs=[
|
14 |
gr.Dropdown(choices=["C", "Python", "Java"], label="Language"),
|
15 |
gr.Textbox(lines=2, placeholder="Enter the problem question here...", label="Question"),
|