Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +24 -0
- requirements.txt +4 -0
- tinyllama_inference.py +44 -0
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CODEXGAME/backend/ai_evaluator/app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from tinyllama_inference import evaluate_code
|
5 |
+
|
6 |
+
def evaluate_interface(question, code):
|
7 |
+
result = evaluate_code(question, code)
|
8 |
+
stars = result.get("stars", 0)
|
9 |
+
feedback = result.get("feedback", "No feedback provided.")
|
10 |
+
return f"Stars: {stars}\nFeedback: {feedback}"
|
11 |
+
|
12 |
+
iface = gr.Interface(
|
13 |
+
fn=evaluate_interface,
|
14 |
+
inputs=[
|
15 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter the problem question here..."),
|
16 |
+
gr.inputs.Textbox(lines=10, placeholder="Enter your code solution here...")
|
17 |
+
],
|
18 |
+
outputs="text",
|
19 |
+
title="TinyLlama Code Evaluator",
|
20 |
+
description="Evaluate your coding solution with TinyLlama. Provide the problem statement and your code to get a rating and feedback."
|
21 |
+
)
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
gradio
|
tinyllama_inference.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CODEXGAME/backend/ai_evaluator/tinyllama_inference.py
|
2 |
+
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
# Change the model identifier if needed – this should be a TinyLlama variant available on Hugging Face.
|
9 |
+
model_name = "TheBloke/tiny-llama-7b"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
return tokenizer, model
|
13 |
+
|
14 |
+
def evaluate_code(question, code):
|
15 |
+
# Construct a prompt for the AI evaluator.
|
16 |
+
prompt = f"""
|
17 |
+
You are an expert code evaluator.
|
18 |
+
Rate the user's solution to the following problem from 0-5 (0 = completely incorrect, 5 = excellent).
|
19 |
+
Also provide a concise "feedback" message.
|
20 |
+
Problem: "{question}"
|
21 |
+
Solution: "{code}"
|
22 |
+
Return ONLY valid JSON: {{"stars": number, "feedback": string}}
|
23 |
+
Do not include any extra text outside the JSON.
|
24 |
+
"""
|
25 |
+
tokenizer, model = load_model()
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
27 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
28 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
try:
|
30 |
+
result = json.loads(response_text.strip())
|
31 |
+
except Exception as e:
|
32 |
+
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
|
33 |
+
return result
|
34 |
+
|
35 |
+
# For direct testing from the command line
|
36 |
+
if __name__ == "__main__":
|
37 |
+
import sys
|
38 |
+
if len(sys.argv) < 3:
|
39 |
+
print(json.dumps({"error": "Please provide a question and code as arguments"}))
|
40 |
+
sys.exit(1)
|
41 |
+
question = sys.argv[1]
|
42 |
+
code = sys.argv[2]
|
43 |
+
result = evaluate_code(question, code)
|
44 |
+
print(json.dumps(result))
|