Spaces:
Runtime error
Runtime error
Ruslan
commited on
Commit
·
55ece2a
1
Parent(s):
35cc04d
Clone Leaderboard
Browse files- app.py +141 -122
- src/about.py +65 -40
- src/display/formatting.py +2 -2
- src/display/utils.py +24 -32
- src/envs.py +4 -4
- src/leaderboard/read_evals.py +77 -108
- src/populate.py +13 -11
- src/submission/check_validity.py +2 -82
- src/submission/submit.py +60 -79
app.py
CHANGED
@@ -9,8 +9,10 @@ from src.about import (
|
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
-
|
13 |
TITLE,
|
|
|
|
|
14 |
)
|
15 |
from src.display.css_html_js import custom_css
|
16 |
from src.display.utils import (
|
@@ -21,7 +23,6 @@ from src.display.utils import (
|
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
fields,
|
24 |
-
WeightType,
|
25 |
Precision
|
26 |
)
|
27 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
@@ -34,14 +35,12 @@ def restart_space():
|
|
34 |
|
35 |
### Space initialisation
|
36 |
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
snapshot_download(
|
39 |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
)
|
41 |
except Exception:
|
42 |
restart_space()
|
43 |
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
snapshot_download(
|
46 |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
)
|
@@ -53,140 +52,160 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
53 |
|
54 |
(
|
55 |
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
pending_eval_queue_df,
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
],
|
87 |
-
|
88 |
-
interactive=False,
|
89 |
)
|
90 |
|
91 |
-
|
92 |
demo = gr.Blocks(css=custom_css)
|
93 |
with demo:
|
94 |
gr.HTML(TITLE)
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅
|
99 |
-
|
100 |
|
101 |
-
with gr.TabItem("📝 About", elem_id="
|
102 |
-
gr.Markdown(
|
103 |
|
104 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
-
with gr.Row():
|
145 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
-
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
|
191 |
with gr.Row():
|
192 |
with gr.Accordion("📙 Citation", open=False):
|
@@ -201,4 +220,4 @@ with demo:
|
|
201 |
scheduler = BackgroundScheduler()
|
202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
203 |
scheduler.start()
|
204 |
-
demo.
|
|
|
9 |
CITATION_BUTTON_TEXT,
|
10 |
EVALUATION_QUEUE_TEXT,
|
11 |
INTRODUCTION_TEXT,
|
12 |
+
ABOUT_TEXT,
|
13 |
TITLE,
|
14 |
+
Training_Dataset,
|
15 |
+
Testing_Type
|
16 |
)
|
17 |
from src.display.css_html_js import custom_css
|
18 |
from src.display.utils import (
|
|
|
23 |
AutoEvalColumn,
|
24 |
ModelType,
|
25 |
fields,
|
|
|
26 |
Precision
|
27 |
)
|
28 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
|
|
35 |
|
36 |
### Space initialisation
|
37 |
try:
|
|
|
38 |
snapshot_download(
|
39 |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
)
|
41 |
except Exception:
|
42 |
restart_space()
|
43 |
try:
|
|
|
44 |
snapshot_download(
|
45 |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
46 |
)
|
|
|
52 |
|
53 |
(
|
54 |
finished_eval_queue_df,
|
|
|
55 |
pending_eval_queue_df,
|
56 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
57 |
|
58 |
def init_leaderboard(dataframe):
|
59 |
if dataframe is None or dataframe.empty:
|
60 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
61 |
+
|
62 |
+
with gr.Tabs(elem_classes="leaderboard-tabs") as leaderboard_tabs:
|
63 |
+
for testing_type in Testing_Type:
|
64 |
+
with gr.TabItem("Average Scores" if testing_type.value == "avg" else testing_type.name, elem_id=f"{testing_type.value}_Leaderboard"):
|
65 |
+
if testing_type.value == "avg":
|
66 |
+
gr.Markdown("The scores presented in this tab are averaged scores across all datasets.")
|
67 |
+
|
68 |
+
try:
|
69 |
+
leaderboard = Leaderboard(
|
70 |
+
value=dataframe[dataframe["Testing Type"] == testing_type.name],
|
71 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
72 |
+
select_columns=SelectColumns(
|
73 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
74 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
75 |
+
label="Select Columns to Display:",
|
76 |
+
),
|
77 |
+
search_columns=[AutoEvalColumn.model_name.name],
|
78 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
79 |
+
filter_columns=[
|
80 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
81 |
+
ColumnFilter(AutoEvalColumn.training_dataset_type.name, type="checkboxgroup", label="Training Dataset"),
|
82 |
+
ColumnFilter(
|
83 |
+
AutoEvalColumn.model_parameters.name,
|
84 |
+
type="slider",
|
85 |
+
min=0,
|
86 |
+
max=10000,
|
87 |
+
default=["0", "100"],
|
88 |
+
label="Select the number of parameters (M)",
|
89 |
+
),
|
90 |
+
],
|
91 |
+
bool_checkboxgroup_label="Hide Models",
|
92 |
+
interactive=False,
|
93 |
+
)
|
94 |
+
except:
|
95 |
+
gr.Markdown("There are no submissions for this testing type yet.")
|
96 |
+
|
97 |
+
def init_submissions():
|
98 |
+
with gr.Column():
|
99 |
+
with gr.Row():
|
100 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
101 |
+
|
102 |
+
with gr.Column():
|
103 |
+
with gr.Accordion(
|
104 |
+
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
105 |
+
open=False,
|
106 |
+
):
|
107 |
+
with gr.Row():
|
108 |
+
finished_eval_table = gr.components.Dataframe(
|
109 |
+
value=finished_eval_queue_df,
|
110 |
+
headers=EVAL_COLS,
|
111 |
+
datatype=EVAL_TYPES,
|
112 |
+
row_count=5,
|
113 |
+
)
|
114 |
+
|
115 |
+
with gr.Accordion(
|
116 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
117 |
+
open=False,
|
118 |
+
):
|
119 |
+
with gr.Row():
|
120 |
+
pending_eval_table = gr.components.Dataframe(
|
121 |
+
value=pending_eval_queue_df,
|
122 |
+
headers=EVAL_COLS,
|
123 |
+
datatype=EVAL_TYPES,
|
124 |
+
row_count=5,
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
with gr.Column():
|
132 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
133 |
+
model_link_textbox = gr.Textbox(label="Link to Model")
|
134 |
+
model_backbone_textbox = gr.Dropdown(
|
135 |
+
choices=["Original"],
|
136 |
+
label="Model Backbone",
|
137 |
+
value="Original",
|
138 |
+
allow_custom_value=True,
|
139 |
+
)
|
140 |
+
|
141 |
+
model_parameter_number = gr.Number(label="Model Parameter Count (M)", precision=1, minimum=0)
|
142 |
+
|
143 |
+
precision = gr.Dropdown(
|
144 |
+
choices=[i.name for i in Precision],
|
145 |
+
label="Precision",
|
146 |
+
multiselect=False,
|
147 |
+
value="float32",
|
148 |
+
interactive=True,
|
149 |
+
)
|
150 |
+
paper_name_textbox = gr.Textbox(label="Paper Name")
|
151 |
+
paper_link_textbox = gr.Textbox(label="Link To Paper")
|
152 |
+
|
153 |
+
|
154 |
+
with gr.Column():
|
155 |
+
training_dataset = gr.Dropdown(
|
156 |
+
choices=[i.value for i in Training_Dataset if i.value != Training_Dataset.Other.value],
|
157 |
+
label="Training Dataset",
|
158 |
+
multiselect=False,
|
159 |
+
value=Training_Dataset.XCL.value,
|
160 |
+
interactive=True,
|
161 |
+
allow_custom_value=True,
|
162 |
+
)
|
163 |
+
testing_type = gr.Dropdown(
|
164 |
+
choices=[i.name for i in Testing_Type],
|
165 |
+
label="Tested on",
|
166 |
+
multiselect=False,
|
167 |
+
value=Testing_Type.AVG.name,
|
168 |
+
interactive=True,
|
169 |
+
)
|
170 |
+
cmap_value = gr.Number(label="cmAP Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
|
171 |
+
auroc_value = gr.Number(label="AUROC Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
|
172 |
+
t1acc_value = gr.Number(label="T1-Acc Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01)
|
173 |
+
|
174 |
+
submit_button = gr.Button("Submit Eval")
|
175 |
+
submission_result = gr.Markdown()
|
176 |
+
submit_button.click(
|
177 |
+
fn=add_new_eval,
|
178 |
+
inputs=[
|
179 |
+
model_name_textbox,
|
180 |
+
model_link_textbox,
|
181 |
+
model_backbone_textbox,
|
182 |
+
precision,
|
183 |
+
model_parameter_number,
|
184 |
+
paper_name_textbox,
|
185 |
+
paper_link_textbox,
|
186 |
+
training_dataset,
|
187 |
+
testing_type,
|
188 |
+
cmap_value,
|
189 |
+
auroc_value,
|
190 |
+
t1acc_value,
|
191 |
],
|
192 |
+
outputs=submission_result,
|
|
|
193 |
)
|
194 |
|
|
|
195 |
demo = gr.Blocks(css=custom_css)
|
196 |
with demo:
|
197 |
gr.HTML(TITLE)
|
198 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
199 |
|
200 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
201 |
+
with gr.TabItem("🏅 Leaderboard", elem_id="leaderboard-tab-table", id=0):
|
202 |
+
init_leaderboard(LEADERBOARD_DF)
|
203 |
|
204 |
+
with gr.TabItem("📝 About", elem_id="leaderboard-tab-table", id=2):
|
205 |
+
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text")
|
206 |
|
207 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="leaderboard-tab-table", id=3):
|
208 |
+
init_submissions()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
with gr.Row():
|
211 |
with gr.Accordion("📙 Citation", open=False):
|
|
|
220 |
scheduler = BackgroundScheduler()
|
221 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
222 |
scheduler.start()
|
223 |
+
demo.launch()
|
src/about.py
CHANGED
@@ -1,9 +1,51 @@
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@dataclass
|
5 |
class Task:
|
6 |
-
benchmark: str
|
7 |
metric: str
|
8 |
col_name: str
|
9 |
|
@@ -11,62 +53,45 @@ class Task:
|
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
-
NUM_FEWSHOT = 0
|
19 |
# ---------------------------------------------------
|
20 |
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title">
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
28 |
-
|
29 |
"""
|
30 |
|
31 |
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
-
|
33 |
-
##
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
"""
|
39 |
|
40 |
EVALUATION_QUEUE_TEXT = """
|
41 |
-
##
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
46 |
-
config = AutoConfig.from_pretrained("your model name", revision=revision)
|
47 |
-
model = AutoModel.from_pretrained("your model name", revision=revision)
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
49 |
-
```
|
50 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
51 |
|
52 |
-
|
53 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
54 |
|
55 |
-
|
56 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
57 |
-
|
58 |
-
### 3) Make sure your model has an open license!
|
59 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
60 |
-
|
61 |
-
### 4) Fill up your model card
|
62 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
63 |
-
|
64 |
-
## In case of model failure
|
65 |
-
If your model is displayed in the `FAILED` category, its execution stopped.
|
66 |
-
Make sure you have followed the above steps first.
|
67 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
|
68 |
"""
|
69 |
|
70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
71 |
-
CITATION_BUTTON_TEXT = r"""
|
72 |
-
"""
|
|
|
1 |
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
|
4 |
+
class Model_Backbone(Enum):
|
5 |
+
Original = "Original"
|
6 |
+
Other = "Other"
|
7 |
+
|
8 |
+
def from_str(model_backbone: str):
|
9 |
+
if model_backbone == Model_Backbone.Original.value:
|
10 |
+
return Model_Backbone.Original
|
11 |
+
return Model_Backbone.Other
|
12 |
+
|
13 |
+
@classmethod
|
14 |
+
def format_for_leaderboard(cls, model_backbone: str):
|
15 |
+
return (cls.from_str(model_backbone), model_backbone)
|
16 |
+
|
17 |
+
class Training_Dataset(Enum):
|
18 |
+
XCL = "BirdSet (XCL)"
|
19 |
+
XCM = "BirdSet (XCM)"
|
20 |
+
Dedicated = "BirdSet (Dedicated)"
|
21 |
+
Other = "other"
|
22 |
+
|
23 |
+
def from_str(training_dataset: str):
|
24 |
+
if training_dataset in [Training_Dataset.Dedicated.value, Training_Dataset.Dedicated.name, "BirdSet - Dedicated", "dt", "DT"]:
|
25 |
+
return Training_Dataset.Dedicated
|
26 |
+
if training_dataset in [Training_Dataset.XCM.value, Training_Dataset.XCM.name, "BirdSet - XCM", "mt", "MT"]:
|
27 |
+
return Training_Dataset.XCM
|
28 |
+
if training_dataset in [Training_Dataset.XCL.value, Training_Dataset.XCL.name, "BirdSet - XCL", "lt", "LT"]:
|
29 |
+
return Training_Dataset.XCL
|
30 |
+
return Training_Dataset.Other
|
31 |
+
|
32 |
+
@classmethod
|
33 |
+
def format_for_leaderboard(cls, training_dataset: str):
|
34 |
+
return (cls.from_str(training_dataset), training_dataset)
|
35 |
+
|
36 |
+
class Testing_Type(Enum):
|
37 |
+
AVG = "avg"
|
38 |
+
PER = "per"
|
39 |
+
NES = "nes"
|
40 |
+
UHH = "uhh"
|
41 |
+
HSN = "hsn"
|
42 |
+
NBP = "nbp"
|
43 |
+
SSW = "ssw"
|
44 |
+
SNE = "sne"
|
45 |
+
|
46 |
+
|
47 |
@dataclass
|
48 |
class Task:
|
|
|
49 |
metric: str
|
50 |
col_name: str
|
51 |
|
|
|
53 |
# Select your tasks here
|
54 |
# ---------------------------------------------------
|
55 |
class Tasks(Enum):
|
56 |
+
# metric_key in the json file, name to display in the leaderboard
|
57 |
+
cmap = Task("cmap", "cmAP")
|
58 |
+
auroc = Task("auroc", "AUROC")
|
59 |
+
t1acc = Task("t1-acc", "T1-Acc")
|
60 |
|
61 |
+
NUM_FEWSHOT = 0
|
62 |
# ---------------------------------------------------
|
63 |
|
64 |
|
65 |
|
66 |
# Your leaderboard name
|
67 |
+
TITLE = """<h1 align="center" id="space-title">BirdSet Leaderboard</h1>"""
|
68 |
|
69 |
# What does your leaderboard evaluate?
|
70 |
INTRODUCTION_TEXT = """
|
71 |
+
This leaderboard accompanies the [BirdSet Dataset Collection](https://huggingface.co/datasets/DBD-research-group/BirdSet). You can find out more about BirdSet in the \"About\" Tab.
|
72 |
"""
|
73 |
|
74 |
# Which evaluations are you running? how can people reproduce what you have?
|
75 |
+
ABOUT_TEXT = f"""
|
76 |
+
## What is BirdSet
|
77 |
+
Deep learning models have emerged as a powerful tool in avian bioacoustics to assess environmental health.
|
78 |
+
To maximize the potential of cost-effective and minimal-invasive passive acoustic monitoring (PAM), models must analyze bird vocalizations across a wide range of species and environmental conditions.
|
79 |
+
However, data fragmentation challenges a evaluation of generalization performance.
|
80 |
+
Therefore, we introduce the BirdSet dataset, comprising approximately 520,000 global bird recordings for training and over 400 hours PAM recordings for testing in a multi-label classification setting.
|
81 |
+
|
82 |
+
You can find the datasets on [Huggingface](https://huggingface.co/datasets/DBD-research-group/BirdSet) and the code on [Github](https://github.com/DBD-research-group/BirdSet).
|
83 |
"""
|
84 |
|
85 |
EVALUATION_QUEUE_TEXT = """
|
86 |
+
## How to Submit a Model
|
87 |
+
First you need to evaluate your model on the BirdSet dataset.
|
88 |
+
Then you can enter your evaluation information and submit a request.
|
89 |
+
We will then check your request and approve it if everything is alright.
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
Please make sure that you model is publicly available so that we can check you results.
|
|
|
92 |
|
93 |
+
If you want to submit an average over all datasets then choose \"AVG\" as \"Tested on\".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
"""
|
95 |
|
96 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
97 |
+
CITATION_BUTTON_TEXT = r""""""
|
|
src/display/formatting.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
def
|
2 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
|
4 |
|
5 |
def make_clickable_model(model_name):
|
6 |
link = f"https://huggingface.co/{model_name}"
|
7 |
-
return
|
8 |
|
9 |
|
10 |
def styled_error(error):
|
|
|
1 |
+
def make_hyperlink(link, model_name):
|
2 |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
|
4 |
|
5 |
def make_clickable_model(model_name):
|
6 |
link = f"https://huggingface.co/{model_name}"
|
7 |
+
return make_hyperlink(link, model_name)
|
8 |
|
9 |
|
10 |
def styled_error(error):
|
src/display/utils.py
CHANGED
@@ -23,22 +23,23 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "
|
27 |
-
auto_eval_column_dict.append(["
|
|
|
|
|
|
|
28 |
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "
|
34 |
-
auto_eval_column_dict.append(["
|
35 |
-
auto_eval_column_dict.append(["
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "
|
37 |
-
auto_eval_column_dict.append(["
|
38 |
-
auto_eval_column_dict.append(["
|
39 |
-
auto_eval_column_dict.append(["
|
40 |
-
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
@@ -46,11 +47,10 @@ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=
|
|
46 |
## For the queue columns in the submission tab
|
47 |
@dataclass(frozen=True)
|
48 |
class EvalQueueColumn: # Queue column
|
49 |
-
model = ColumnContent("model", "
|
50 |
-
revision = ColumnContent("revision", "str", True)
|
51 |
-
private = ColumnContent("private", "bool", True)
|
52 |
precision = ColumnContent("precision", "str", True)
|
53 |
-
|
|
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
56 |
## All the model information that we might need
|
@@ -66,7 +66,7 @@ class ModelType(Enum):
|
|
66 |
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
-
|
70 |
|
71 |
def to_str(self, separator=" "):
|
72 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
@@ -81,27 +81,19 @@ class ModelType(Enum):
|
|
81 |
return ModelType.RL
|
82 |
if "instruction-tuned" in type or "⭕" in type:
|
83 |
return ModelType.IFT
|
84 |
-
return ModelType.
|
85 |
-
|
86 |
-
class WeightType(Enum):
|
87 |
-
Adapter = ModelDetails("Adapter")
|
88 |
-
Original = ModelDetails("Original")
|
89 |
-
Delta = ModelDetails("Delta")
|
90 |
|
91 |
class Precision(Enum):
|
92 |
-
|
93 |
-
|
94 |
-
Unknown = ModelDetails("?")
|
95 |
|
96 |
def from_str(precision):
|
97 |
-
if precision in ["torch.
|
98 |
-
return Precision.
|
99 |
-
|
100 |
-
return Precision.bfloat16
|
101 |
-
return Precision.Unknown
|
102 |
|
103 |
# Column selection
|
104 |
-
COLS = [c.name for c in fields(AutoEvalColumn)
|
105 |
|
106 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
107 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "markdown", True, never_hidden=True)])
|
27 |
+
auto_eval_column_dict.append(["model_name", ColumnContent, ColumnContent("Model Name", "markdown", True, never_hidden=True)])
|
28 |
+
auto_eval_column_dict.append(["paper", ColumnContent, ColumnContent("Paper", "markdown", False)])
|
29 |
+
auto_eval_column_dict.append(["training_dataset_type", ColumnContent, ColumnContent("Training Dataset Type", "markdown", False, hidden=True)])
|
30 |
+
auto_eval_column_dict.append(["training_dataset", ColumnContent, ColumnContent("Training Dataset", "markdown", True, never_hidden=True)])
|
31 |
#Scores
|
|
|
32 |
for task in Tasks:
|
33 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
34 |
# Model information
|
35 |
+
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "markdown", False)])
|
36 |
+
auto_eval_column_dict.append(["model_backbone_type", ColumnContent, ColumnContent("Model Backbone Type", "markdown", False, hidden=True)])
|
37 |
+
auto_eval_column_dict.append(["model_backbone", ColumnContent, ColumnContent("Model Backbone", "str", True)])
|
38 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "markdown", False)])
|
39 |
+
auto_eval_column_dict.append(["model_parameters", ColumnContent, ColumnContent("Parameter Count", "markdown", False)])
|
40 |
+
auto_eval_column_dict.append(["model_link", ColumnContent, ColumnContent("Link To Model", "markdown", True)])
|
41 |
+
auto_eval_column_dict.append(["testing_type", ColumnContent, ColumnContent("Testing Type", "str", False, hidden=True)])
|
42 |
+
|
|
|
43 |
|
44 |
# We use make dataclass to dynamically fill the scores from Tasks
|
45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
47 |
## For the queue columns in the submission tab
|
48 |
@dataclass(frozen=True)
|
49 |
class EvalQueueColumn: # Queue column
|
50 |
+
model = ColumnContent("model", "str", True)
|
|
|
|
|
51 |
precision = ColumnContent("precision", "str", True)
|
52 |
+
training_dataset = ColumnContent("training_dataset", "str", True)
|
53 |
+
testing_type = ColumnContent("testing_type", "str", True)
|
54 |
status = ColumnContent("status", "str", True)
|
55 |
|
56 |
## All the model information that we might need
|
|
|
66 |
FT = ModelDetails(name="fine-tuned", symbol="🔶")
|
67 |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
|
68 |
RL = ModelDetails(name="RL-tuned", symbol="🟦")
|
69 |
+
Other = ModelDetails(name="Other", symbol="?")
|
70 |
|
71 |
def to_str(self, separator=" "):
|
72 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
|
|
81 |
return ModelType.RL
|
82 |
if "instruction-tuned" in type or "⭕" in type:
|
83 |
return ModelType.IFT
|
84 |
+
return ModelType.Other
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
class Precision(Enum):
|
87 |
+
float32 = "float32"
|
88 |
+
Other = "Other"
|
|
|
89 |
|
90 |
def from_str(precision):
|
91 |
+
if precision in ["torch.float32", "float32"]:
|
92 |
+
return Precision.float32
|
93 |
+
return Precision.Other
|
|
|
|
|
94 |
|
95 |
# Column selection
|
96 |
+
COLS = [c.name for c in fields(AutoEvalColumn)]
|
97 |
|
98 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
99 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
src/envs.py
CHANGED
@@ -6,12 +6,12 @@ from huggingface_hub import HfApi
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "
|
10 |
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/
|
13 |
-
QUEUE_REPO = f"{OWNER}/
|
14 |
-
RESULTS_REPO = f"{OWNER}/
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "DBD-research-group" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
# ----------------------------------
|
11 |
|
12 |
+
REPO_ID = f"{OWNER}/BirdSet-Leaderboard"
|
13 |
+
QUEUE_REPO = f"{OWNER}/Leaderboard-Requests"
|
14 |
+
RESULTS_REPO = f"{OWNER}/Leaderboard-Results"
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
src/leaderboard/read_evals.py
CHANGED
@@ -7,30 +7,31 @@ from dataclasses import dataclass
|
|
7 |
import dateutil
|
8 |
import numpy as np
|
9 |
|
10 |
-
from src.display.formatting import
|
11 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
|
12 |
-
from src.
|
13 |
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
results: dict
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
date: str = "" # submission date of request file
|
33 |
-
still_on_hub: bool = False
|
34 |
|
35 |
@classmethod
|
36 |
def init_from_json_file(self, json_filepath):
|
@@ -40,118 +41,96 @@ class EvalResult:
|
|
40 |
|
41 |
config = data.get("config")
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
org_and_model = org_and_model.split("/", 1)
|
49 |
-
|
50 |
-
if len(org_and_model) == 1:
|
51 |
-
org = None
|
52 |
-
model = org_and_model[0]
|
53 |
-
result_key = f"{model}_{precision.value.name}"
|
54 |
else:
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
still_on_hub, _, model_config = is_model_on_hub(
|
61 |
-
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
62 |
-
)
|
63 |
-
architecture = "?"
|
64 |
-
if model_config is not None:
|
65 |
-
architectures = getattr(model_config, "architectures", None)
|
66 |
-
if architectures:
|
67 |
-
architecture = ";".join(architectures)
|
68 |
|
69 |
-
# Extract results
|
70 |
results = {}
|
71 |
for task in Tasks:
|
72 |
task = task.value
|
73 |
-
|
74 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
77 |
-
continue
|
78 |
-
|
79 |
-
mean_acc = np.mean(accs) * 100.0
|
80 |
-
results[task.benchmark] = mean_acc
|
81 |
|
82 |
return self(
|
83 |
-
eval_name=
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
results=results,
|
88 |
-
precision=precision,
|
89 |
-
revision= config.get("model_sha", ""),
|
90 |
-
still_on_hub=still_on_hub,
|
91 |
-
architecture=architecture
|
92 |
)
|
93 |
|
94 |
def update_with_request_file(self, requests_path):
|
95 |
"""Finds the relevant request file for the current model and updates info with it"""
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
try:
|
99 |
with open(request_file, "r") as f:
|
100 |
request = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
102 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
103 |
-
self.license = request.get("license", "?")
|
104 |
-
self.likes = request.get("likes", 0)
|
105 |
-
self.num_params = request.get("params", 0)
|
106 |
self.date = request.get("submitted_time", "")
|
107 |
except Exception:
|
108 |
-
print(f"Could not find request file for {self.
|
109 |
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
-
AutoEvalColumn.precision.name: self.precision.value
|
116 |
-
AutoEvalColumn.
|
117 |
-
AutoEvalColumn.
|
118 |
-
AutoEvalColumn.
|
119 |
-
AutoEvalColumn.
|
120 |
-
AutoEvalColumn.
|
121 |
-
AutoEvalColumn.
|
122 |
-
AutoEvalColumn.
|
123 |
-
AutoEvalColumn.
|
124 |
-
AutoEvalColumn.
|
125 |
-
AutoEvalColumn.params.name: self.num_params,
|
126 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
127 |
}
|
128 |
|
129 |
for task in Tasks:
|
130 |
-
data_dict[task.value.col_name] = self.results[task.value.
|
131 |
|
132 |
return data_dict
|
133 |
|
134 |
|
135 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
136 |
-
"""Selects the correct request file for a given model
|
137 |
-
|
138 |
requests_path,
|
139 |
-
|
|
|
140 |
)
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
):
|
153 |
-
request_file = tmp_request_file
|
154 |
-
return request_file
|
155 |
|
156 |
|
157 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
@@ -163,12 +142,6 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
163 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
164 |
continue
|
165 |
|
166 |
-
# Sort the files by date
|
167 |
-
try:
|
168 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
169 |
-
except dateutil.parser._parser.ParserError:
|
170 |
-
files = [files[-1]]
|
171 |
-
|
172 |
for file in files:
|
173 |
model_result_filepaths.append(os.path.join(root, file))
|
174 |
|
@@ -178,12 +151,8 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
178 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
eval_result.update_with_request_file(requests_path)
|
180 |
|
181 |
-
# Store results of same eval together
|
182 |
eval_name = eval_result.eval_name
|
183 |
-
|
184 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
185 |
-
else:
|
186 |
-
eval_results[eval_name] = eval_result
|
187 |
|
188 |
results = []
|
189 |
for v in eval_results.values():
|
@@ -192,5 +161,5 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
192 |
results.append(v)
|
193 |
except KeyError: # not all eval values present
|
194 |
continue
|
195 |
-
|
196 |
return results
|
|
|
7 |
import dateutil
|
8 |
import numpy as np
|
9 |
|
10 |
+
from src.display.formatting import make_hyperlink
|
11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision
|
12 |
+
from src.about import Model_Backbone, Training_Dataset, Testing_Type
|
13 |
|
14 |
|
15 |
@dataclass
|
16 |
class EvalResult:
|
|
|
17 |
"""
|
18 |
+
Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
19 |
+
"""
|
20 |
+
eval_name: str # model_training_testing_precision (identifier for evaluations)
|
21 |
+
model_name: str
|
22 |
+
training_dataset_type: Training_Dataset
|
23 |
+
training_dataset: str
|
24 |
+
testing_type: Testing_Type
|
25 |
results: dict
|
26 |
+
paper_name: str = ""
|
27 |
+
model_link: str = ""
|
28 |
+
paper_link: str = ""
|
29 |
+
model_backbone_type: Model_Backbone = Model_Backbone.Other
|
30 |
+
model_backbone: str = ""
|
31 |
+
precision: Precision = Precision.Other
|
32 |
+
model_parameters: float = 0
|
33 |
+
model_type: ModelType = ModelType.Other # Pretrained, fine tuned, ...
|
34 |
date: str = "" # submission date of request file
|
|
|
35 |
|
36 |
@classmethod
|
37 |
def init_from_json_file(self, json_filepath):
|
|
|
41 |
|
42 |
config = data.get("config")
|
43 |
|
44 |
+
# Extract evaluation config
|
45 |
+
model_name = config["model_name"]
|
46 |
+
training_dataset_type = Training_Dataset.from_str(config["training_dataset"])
|
47 |
+
if training_dataset_type.name != Training_Dataset.Other.name:
|
48 |
+
training_dataset = training_dataset_type.value
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
else:
|
50 |
+
training_dataset = config["training_dataset"]
|
51 |
+
testing_type = Testing_Type(config["testing_type"])
|
52 |
+
precision = Precision.from_str(config.get("model_dtype"))
|
53 |
+
eval_name = model_name + precision.value + training_dataset + testing_type.value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Extract results
|
56 |
results = {}
|
57 |
for task in Tasks:
|
58 |
task = task.value
|
59 |
+
results[task.metric] = data["results"].get(task.metric, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
return self(
|
62 |
+
eval_name=eval_name,
|
63 |
+
model_name=model_name,
|
64 |
+
training_dataset_type=training_dataset_type,
|
65 |
+
training_dataset=training_dataset,
|
66 |
+
testing_type=testing_type,
|
67 |
+
precision=precision,
|
68 |
results=results,
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
|
71 |
def update_with_request_file(self, requests_path):
|
72 |
"""Finds the relevant request file for the current model and updates info with it"""
|
73 |
+
if self.training_dataset_type.name != Training_Dataset.Other.name:
|
74 |
+
training_dataset_request = self.training_dataset_type.name
|
75 |
+
else:
|
76 |
+
training_dataset_request = self.training_dataset
|
77 |
+
training_dataset_request = "_".join(training_dataset_request.split())
|
78 |
+
request_file = get_request_file_for_model(requests_path, self.model_name, self.precision.value, training_dataset_request, self.testing_type.value)
|
79 |
|
80 |
try:
|
81 |
with open(request_file, "r") as f:
|
82 |
request = json.load(f)
|
83 |
+
self.model_parameters = request.get("model_parameters", 0)
|
84 |
+
self.model_link = request.get("model_link", "None")
|
85 |
+
self.model_backbone = request.get("model_backbone", "Unknown")
|
86 |
+
self.model_backbone_type = Model_Backbone.from_str(self.model_backbone)
|
87 |
+
self.paper_name = request.get("paper_name", "None")
|
88 |
+
self.paper_link = request.get("paper_link", "None")
|
89 |
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
|
|
|
|
|
|
|
|
90 |
self.date = request.get("submitted_time", "")
|
91 |
except Exception:
|
92 |
+
print(f"Could not find request file for {self.model_name} with precision {self.precision.value}, training dataset {self.training_dataset} and testing type {self.testing_type.value}")
|
93 |
|
94 |
def to_dict(self):
|
95 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
96 |
data_dict = {
|
97 |
"eval_name": self.eval_name, # not a column, just a save name,
|
98 |
+
AutoEvalColumn.precision.name: self.precision.value,
|
99 |
+
AutoEvalColumn.model_parameters.name: self.model_parameters,
|
100 |
+
AutoEvalColumn.model_name.name: self.model_name,
|
101 |
+
AutoEvalColumn.paper.name: make_hyperlink(self.paper_link, self.paper_name) if self.paper_link.startswith("http") else self.paper_name,
|
102 |
+
AutoEvalColumn.model_backbone_type.name: self.model_backbone_type.value,
|
103 |
+
AutoEvalColumn.model_backbone.name: self.model_backbone,
|
104 |
+
AutoEvalColumn.training_dataset_type.name: self.training_dataset_type.value,
|
105 |
+
AutoEvalColumn.training_dataset.name: self.training_dataset,
|
106 |
+
AutoEvalColumn.testing_type.name: self.testing_type.name,
|
107 |
+
AutoEvalColumn.model_link.name: self.model_link
|
|
|
|
|
108 |
}
|
109 |
|
110 |
for task in Tasks:
|
111 |
+
data_dict[task.value.col_name] = self.results[task.value.metric]
|
112 |
|
113 |
return data_dict
|
114 |
|
115 |
|
116 |
+
def get_request_file_for_model(requests_path, model_name, precision, training_dataset, testing_type):
|
117 |
+
"""Selects the correct request file for a given model if it's marked as FINISHED"""
|
118 |
+
request_filename = os.path.join(
|
119 |
requests_path,
|
120 |
+
model_name,
|
121 |
+
f"{model_name}_eval_request_{precision}_{training_dataset}_{testing_type}.json",
|
122 |
)
|
123 |
+
|
124 |
+
# check for request file
|
125 |
+
try:
|
126 |
+
with open(request_filename, "r") as file:
|
127 |
+
req_content = json.load(file)
|
128 |
+
if req_content["status"] not in ["FINISHED"]:
|
129 |
+
return None
|
130 |
+
except OSError:
|
131 |
+
return None
|
132 |
+
|
133 |
+
return request_filename
|
|
|
|
|
|
|
134 |
|
135 |
|
136 |
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
|
|
142 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
143 |
continue
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
for file in files:
|
146 |
model_result_filepaths.append(os.path.join(root, file))
|
147 |
|
|
|
151 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
152 |
eval_result.update_with_request_file(requests_path)
|
153 |
|
|
|
154 |
eval_name = eval_result.eval_name
|
155 |
+
eval_results[eval_name] = eval_result
|
|
|
|
|
|
|
156 |
|
157 |
results = []
|
158 |
for v in eval_results.values():
|
|
|
161 |
results.append(v)
|
162 |
except KeyError: # not all eval values present
|
163 |
continue
|
164 |
+
|
165 |
return results
|
src/populate.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
|
8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
9 |
|
10 |
|
@@ -14,11 +15,11 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
22 |
return df
|
23 |
|
24 |
|
@@ -33,27 +34,28 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
33 |
with open(file_path) as fp:
|
34 |
data = json.load(fp)
|
35 |
|
36 |
-
data[EvalQueueColumn.model.name] =
|
37 |
-
data[EvalQueueColumn.
|
|
|
|
|
38 |
|
39 |
all_evals.append(data)
|
40 |
elif ".md" not in entry:
|
41 |
# this is a folder
|
42 |
-
|
43 |
-
sub_entries = []
|
44 |
for sub_entry in sub_entries:
|
45 |
file_path = os.path.join(save_path, entry, sub_entry)
|
46 |
with open(file_path) as fp:
|
47 |
data = json.load(fp)
|
48 |
|
49 |
-
data[EvalQueueColumn.model.name] =
|
50 |
-
data[EvalQueueColumn.
|
|
|
|
|
51 |
all_evals.append(data)
|
52 |
|
53 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
54 |
-
|
55 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
56 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
57 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
58 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
59 |
-
return df_finished[cols],
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from src.about import Tasks, Training_Dataset
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
|
11 |
|
|
|
15 |
all_data_json = [v.to_dict() for v in raw_data]
|
16 |
|
17 |
df = pd.DataFrame.from_records(all_data_json)
|
|
|
18 |
df = df[cols].round(decimals=2)
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
22 |
+
df = df.sort_values(by=[Tasks.auroc.value.col_name, Tasks.cmap.value.col_name, Tasks.t1acc.value.col_name], ascending=False)
|
23 |
return df
|
24 |
|
25 |
|
|
|
34 |
with open(file_path) as fp:
|
35 |
data = json.load(fp)
|
36 |
|
37 |
+
data[EvalQueueColumn.model.name] = data["model_name"]
|
38 |
+
data[EvalQueueColumn.precision.name] = data.get("precision", "other")
|
39 |
+
data[EvalQueueColumn.training_dataset.name] = Training_Dataset.from_str(data.get("training_dataset", "other")).value
|
40 |
+
data[EvalQueueColumn.testing_type.name] = data["testing_type"]
|
41 |
|
42 |
all_evals.append(data)
|
43 |
elif ".md" not in entry:
|
44 |
# this is a folder
|
45 |
+
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
|
|
46 |
for sub_entry in sub_entries:
|
47 |
file_path = os.path.join(save_path, entry, sub_entry)
|
48 |
with open(file_path) as fp:
|
49 |
data = json.load(fp)
|
50 |
|
51 |
+
data[EvalQueueColumn.model.name] = data["model_name"]
|
52 |
+
data[EvalQueueColumn.precision.name] = data.get("precision", "other")
|
53 |
+
data[EvalQueueColumn.training_dataset.name] = Training_Dataset.from_str(data.get("training_dataset", "None"))
|
54 |
+
data[EvalQueueColumn.testing_type.name] = data["testing_type"]
|
55 |
all_evals.append(data)
|
56 |
|
57 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
58 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
|
|
59 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
|
|
60 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
61 |
+
return df_finished[cols], df_pending[cols]
|
src/submission/check_validity.py
CHANGED
@@ -1,84 +1,10 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
|
77 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
depth = 1
|
80 |
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
|
83 |
for root, _, files in os.walk(requested_models_dir):
|
84 |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
@@ -88,12 +14,6 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
88 |
continue
|
89 |
with open(os.path.join(root, file), "r") as f:
|
90 |
info = json.load(f)
|
91 |
-
file_names.append(f"{info['
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
|
99 |
-
return set(file_names)
|
|
|
1 |
import json
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
5 |
"""Gather a list of already submitted models to avoid duplicates"""
|
6 |
depth = 1
|
7 |
file_names = []
|
|
|
8 |
|
9 |
for root, _, files in os.walk(requested_models_dir):
|
10 |
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
|
|
14 |
continue
|
15 |
with open(os.path.join(root, file), "r") as f:
|
16 |
info = json.load(f)
|
17 |
+
file_names.append(f"{info['model_name']}_{info['training_dataset']}_{info['testing_type']}_{info['precision']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
return set(file_names)
|
src/submission/submit.py
CHANGED
@@ -4,112 +4,91 @@ from datetime import datetime, timezone
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import
|
8 |
-
|
9 |
-
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
|
14 |
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
|
17 |
def add_new_eval(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
precision: str,
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
):
|
|
|
25 |
global REQUESTED_MODELS
|
26 |
-
global USERS_TO_SUBMISSION_DATES
|
27 |
if not REQUESTED_MODELS:
|
28 |
-
REQUESTED_MODELS
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Does the model actually exist?
|
43 |
-
if revision == "":
|
44 |
-
revision = "main"
|
45 |
-
|
46 |
-
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
if not base_model_on_hub:
|
50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
return styled_error(f'Model "{model}" {error}')
|
56 |
|
57 |
-
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
except Exception:
|
61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
-
|
75 |
-
# Seems good, creating the eval
|
76 |
print("Adding new eval")
|
77 |
|
78 |
eval_entry = {
|
79 |
-
"
|
80 |
-
"
|
81 |
-
"
|
82 |
"precision": precision,
|
83 |
-
"
|
|
|
|
|
84 |
"status": "PENDING",
|
85 |
"submitted_time": current_time,
|
86 |
-
"
|
87 |
-
"
|
88 |
-
"
|
89 |
-
"
|
90 |
-
"
|
91 |
}
|
92 |
|
93 |
-
|
94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
return styled_warning("This model has been already submitted.")
|
96 |
|
97 |
print("Creating eval file")
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
105 |
print("Uploading eval file")
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
# Remove the local file
|
115 |
os.remove(out_path)
|
@@ -117,3 +96,5 @@ def add_new_eval(
|
|
117 |
return styled_message(
|
118 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
)
|
|
|
|
|
|
4 |
|
5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
+
from src.submission.check_validity import already_submitted_models
|
8 |
+
from src.about import Training_Dataset
|
9 |
+
|
|
|
|
|
|
|
10 |
|
11 |
REQUESTED_MODELS = None
|
|
|
12 |
|
13 |
def add_new_eval(
|
14 |
+
model_name : str = None,
|
15 |
+
model_link : str = None,
|
16 |
+
model_backbone : str = "Unknown",
|
17 |
+
precision : str = None,
|
18 |
+
model_parameters: float = 0,
|
19 |
+
paper_name: str = "None",
|
20 |
+
paper_link: str = "None",
|
21 |
+
training_dataset: str = "",
|
22 |
+
testing_type : str = None,
|
23 |
+
cmap_value : float = 0,
|
24 |
+
auroc_value : float = 0,
|
25 |
+
t1acc_value : float = 0,
|
26 |
):
|
27 |
+
|
28 |
global REQUESTED_MODELS
|
|
|
29 |
if not REQUESTED_MODELS:
|
30 |
+
REQUESTED_MODELS = already_submitted_models(EVAL_REQUESTS_PATH)
|
31 |
|
32 |
+
if model_name is None or model_name == "":
|
33 |
+
return styled_error("Please enter a model name")
|
34 |
+
|
35 |
+
if model_link is None or model_link == "":
|
36 |
+
return styled_error("Please provide a link to your model")
|
37 |
|
|
|
38 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
39 |
|
40 |
+
training_dataset_type = Training_Dataset.from_str(training_dataset)
|
41 |
+
if training_dataset_type.name != Training_Dataset.Other.name:
|
42 |
+
training_dataset = training_dataset_type.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
training_dataset = "_".join(training_dataset.split())
|
45 |
+
model_name = "_".join(model_name.split())
|
46 |
+
testing_type = testing_type.lower()
|
|
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
print("Adding new eval")
|
49 |
|
50 |
eval_entry = {
|
51 |
+
"model_name": model_name,
|
52 |
+
"model_link": model_link,
|
53 |
+
"model_backbone": model_backbone,
|
54 |
"precision": precision,
|
55 |
+
"model_parameters": model_parameters,
|
56 |
+
"paper_name": paper_name,
|
57 |
+
"paper_link": paper_link,
|
58 |
"status": "PENDING",
|
59 |
"submitted_time": current_time,
|
60 |
+
"training_dataset": training_dataset,
|
61 |
+
"testing_type": testing_type,
|
62 |
+
"claimed_cmap": cmap_value,
|
63 |
+
"claimed_auroc": auroc_value,
|
64 |
+
"claimed_t1acc": t1acc_value
|
65 |
}
|
66 |
|
67 |
+
if f"{model_name}_{training_dataset}_{testing_type}_{precision}" in REQUESTED_MODELS:
|
|
|
68 |
return styled_warning("This model has been already submitted.")
|
69 |
|
70 |
print("Creating eval file")
|
71 |
+
try:
|
72 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{model_name}"
|
73 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
74 |
+
out_path = f"{OUT_DIR}/{model_name}_eval_request_{precision}_{training_dataset}_{testing_type}.json"
|
75 |
|
76 |
+
with open(out_path, "w") as f:
|
77 |
+
f.write(json.dumps(eval_entry))
|
78 |
+
except:
|
79 |
+
return styled_error("There was an error while creating your request. Make sure there are no \"/\" in your model name.")
|
80 |
|
81 |
print("Uploading eval file")
|
82 |
+
try:
|
83 |
+
API.upload_file(
|
84 |
+
path_or_fileobj=out_path,
|
85 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
86 |
+
repo_id=QUEUE_REPO,
|
87 |
+
repo_type="dataset",
|
88 |
+
commit_message=f"Add {model_name}_{training_dataset}_{testing_type} to eval queue",
|
89 |
+
)
|
90 |
+
except:
|
91 |
+
return styled_error("There was an error while uploading your request.")
|
92 |
|
93 |
# Remove the local file
|
94 |
os.remove(out_path)
|
|
|
96 |
return styled_message(
|
97 |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
98 |
)
|
99 |
+
|
100 |
+
|