Add application file
Browse files- app.py +35 -0
- callbacks.py +360 -0
- dataset.py +278 -0
- demo.py +109 -0
- docker/Dockerfile +25 -0
- figs/cases.png +0 -0
- figs/framework.png +0 -0
- figs/test/CANDY.png +0 -0
- figs/test/ESPLANADE.png +0 -0
- figs/test/GLOBE.png +0 -0
- figs/test/KAPPA.png +0 -0
- figs/test/MANDARIN.png +0 -0
- figs/test/MEETS.png +0 -0
- figs/test/MONTHLY.png +0 -0
- figs/test/RESTROOM.png +0 -0
- losses.py +72 -0
- main.py +246 -0
- modules/__init__.py +0 -0
- modules/attention.py +97 -0
- modules/backbone.py +36 -0
- modules/model.py +50 -0
- modules/model_abinet.py +30 -0
- modules/model_abinet_iter.py +34 -0
- modules/model_alignment.py +34 -0
- modules/model_language.py +67 -0
- modules/model_vision.py +47 -0
- modules/resnet.py +104 -0
- modules/transformer.py +901 -0
- notebooks/dataset-text.ipynb +159 -0
- notebooks/dataset.ipynb +298 -0
- notebooks/prepare_wikitext103.ipynb +468 -0
- notebooks/transforms.ipynb +0 -0
- requirements.txt +7 -0
- tools/create_lmdb_dataset.py +87 -0
- tools/crop_by_word_bb_syn90k.py +153 -0
- transforms.py +329 -0
- utils.py +304 -0
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system('pip install --upgrade gdown')
|
3 |
+
import gdown
|
4 |
+
gdown.download(id='1mYM_26qHUom_5NU7iutHneB_KHlLjL5y', output='workdir.zip')
|
5 |
+
os.system('unzip workdir.zip')
|
6 |
+
|
7 |
+
import glob
|
8 |
+
import gradio as gr
|
9 |
+
from demo import get_model, preprocess, postprocess, load
|
10 |
+
from utils import Config, Logger, CharsetMapper
|
11 |
+
|
12 |
+
def process_image(image):
|
13 |
+
config = Config('configs/train_abinet.yaml')
|
14 |
+
config.model_vision_checkpoint = None
|
15 |
+
model = get_model(config)
|
16 |
+
model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
|
17 |
+
charset = CharsetMapper(filename=config.dataset_charset_path, max_length=config.dataset_max_length + 1)
|
18 |
+
|
19 |
+
img = image.convert('RGB')
|
20 |
+
img = preprocess(img, config.dataset_image_width, config.dataset_image_height)
|
21 |
+
res = model(img)
|
22 |
+
return postprocess(res, charset, 'alignment')[0][0]
|
23 |
+
|
24 |
+
title = "Interactive demo: ABINet"
|
25 |
+
description = "Demo for ABINet, ABINet uses a vision model and an explicit language model to recognize text in the wild, which are trained in end-to-end way. The language model (BCN) achieves bidirectional language representation in simulating cloze test, additionally utilizing iterative correction strategy. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
|
26 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2103.06495.pdf'>Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition</a> | <a href='https://github.com/FangShancheng/ABINet'>Github Repo</a></p>"
|
27 |
+
|
28 |
+
iface = gr.Interface(fn=process_image,
|
29 |
+
inputs=gr.inputs.Image(type="pil"),
|
30 |
+
outputs=gr.outputs.Textbox(),
|
31 |
+
title=title,
|
32 |
+
description=description,
|
33 |
+
article=article,
|
34 |
+
examples=glob.glob('figs/test/*.png'))
|
35 |
+
iface.launch(debug=True)
|
callbacks.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import shutil
|
3 |
+
import time
|
4 |
+
|
5 |
+
import editdistance as ed
|
6 |
+
import torchvision.utils as vutils
|
7 |
+
from fastai.callbacks.tensorboard import (LearnerTensorboardWriter,
|
8 |
+
SummaryWriter, TBWriteRequest,
|
9 |
+
asyncTBWriter)
|
10 |
+
from fastai.vision import *
|
11 |
+
from torch.nn.parallel import DistributedDataParallel
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
import dataset
|
15 |
+
from utils import CharsetMapper, Timer, blend_mask
|
16 |
+
|
17 |
+
|
18 |
+
class IterationCallback(LearnerTensorboardWriter):
|
19 |
+
"A `TrackerCallback` that monitor in each iteration."
|
20 |
+
def __init__(self, learn:Learner, name:str='model', checpoint_keep_num=5,
|
21 |
+
show_iters:int=50, eval_iters:int=1000, save_iters:int=20000,
|
22 |
+
start_iters:int=0, stats_iters=20000):
|
23 |
+
#if self.learn.rank is not None: time.sleep(self.learn.rank) # keep all event files
|
24 |
+
super().__init__(learn, base_dir='.', name=learn.path, loss_iters=show_iters,
|
25 |
+
stats_iters=stats_iters, hist_iters=stats_iters)
|
26 |
+
self.name, self.bestname = Path(name).name, f'best-{Path(name).name}'
|
27 |
+
self.show_iters = show_iters
|
28 |
+
self.eval_iters = eval_iters
|
29 |
+
self.save_iters = save_iters
|
30 |
+
self.start_iters = start_iters
|
31 |
+
self.checpoint_keep_num = checpoint_keep_num
|
32 |
+
self.metrics_root = 'metrics/' # rewrite
|
33 |
+
self.timer = Timer()
|
34 |
+
self.host = self.learn.rank is None or self.learn.rank == 0
|
35 |
+
|
36 |
+
def _write_metrics(self, iteration:int, names:List[str], last_metrics:MetricsList)->None:
|
37 |
+
"Writes training metrics to Tensorboard."
|
38 |
+
for i, name in enumerate(names):
|
39 |
+
if last_metrics is None or len(last_metrics) < i+1: return
|
40 |
+
scalar_value = last_metrics[i]
|
41 |
+
self._write_scalar(name=name, scalar_value=scalar_value, iteration=iteration)
|
42 |
+
|
43 |
+
def _write_sub_loss(self, iteration:int, last_losses:dict)->None:
|
44 |
+
"Writes sub loss to Tensorboard."
|
45 |
+
for name, loss in last_losses.items():
|
46 |
+
scalar_value = to_np(loss)
|
47 |
+
tag = self.metrics_root + name
|
48 |
+
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
|
49 |
+
|
50 |
+
def _save(self, name):
|
51 |
+
if isinstance(self.learn.model, DistributedDataParallel):
|
52 |
+
tmp = self.learn.model
|
53 |
+
self.learn.model = self.learn.model.module
|
54 |
+
self.learn.save(name)
|
55 |
+
self.learn.model = tmp
|
56 |
+
else: self.learn.save(name)
|
57 |
+
|
58 |
+
def _validate(self, dl=None, callbacks=None, metrics=None, keeped_items=False):
|
59 |
+
"Validate on `dl` with potential `callbacks` and `metrics`."
|
60 |
+
dl = ifnone(dl, self.learn.data.valid_dl)
|
61 |
+
metrics = ifnone(metrics, self.learn.metrics)
|
62 |
+
cb_handler = CallbackHandler(ifnone(callbacks, []), metrics)
|
63 |
+
cb_handler.on_train_begin(1, None, metrics); cb_handler.on_epoch_begin()
|
64 |
+
if keeped_items: cb_handler.state_dict.update(dict(keeped_items=[]))
|
65 |
+
val_metrics = validate(self.learn.model, dl, self.loss_func, cb_handler)
|
66 |
+
cb_handler.on_epoch_end(val_metrics)
|
67 |
+
if keeped_items: return cb_handler.state_dict['keeped_items']
|
68 |
+
else: return cb_handler.state_dict['last_metrics']
|
69 |
+
|
70 |
+
def jump_to_epoch_iter(self, epoch:int, iteration:int)->None:
|
71 |
+
try:
|
72 |
+
self.learn.load(f'{self.name}_{epoch}_{iteration}', purge=False)
|
73 |
+
logging.info(f'Loaded {self.name}_{epoch}_{iteration}')
|
74 |
+
except: logging.info(f'Model {self.name}_{epoch}_{iteration} not found.')
|
75 |
+
|
76 |
+
def on_train_begin(self, n_epochs, **kwargs):
|
77 |
+
# TODO: can not write graph here
|
78 |
+
# super().on_train_begin(**kwargs)
|
79 |
+
self.best = -float('inf')
|
80 |
+
self.timer.tic()
|
81 |
+
if self.host:
|
82 |
+
checkpoint_path = self.learn.path/'checkpoint.yaml'
|
83 |
+
if checkpoint_path.exists():
|
84 |
+
os.remove(checkpoint_path)
|
85 |
+
open(checkpoint_path, 'w').close()
|
86 |
+
return {'skip_validate': True, 'iteration':self.start_iters} # disable default validate
|
87 |
+
|
88 |
+
def on_batch_begin(self, **kwargs:Any)->None:
|
89 |
+
self.timer.toc_data()
|
90 |
+
super().on_batch_begin(**kwargs)
|
91 |
+
|
92 |
+
def on_batch_end(self, iteration, epoch, last_loss, smooth_loss, train, **kwargs):
|
93 |
+
super().on_batch_end(last_loss, iteration, train, **kwargs)
|
94 |
+
if iteration == 0: return
|
95 |
+
|
96 |
+
if iteration % self.loss_iters == 0:
|
97 |
+
last_losses = self.learn.loss_func.last_losses
|
98 |
+
self._write_sub_loss(iteration=iteration, last_losses=last_losses)
|
99 |
+
self.tbwriter.add_scalar(tag=self.metrics_root + 'lr',
|
100 |
+
scalar_value=self.opt.lr, global_step=iteration)
|
101 |
+
|
102 |
+
if iteration % self.show_iters == 0:
|
103 |
+
log_str = f'epoch {epoch} iter {iteration}: loss = {last_loss:6.4f}, ' \
|
104 |
+
f'smooth loss = {smooth_loss:6.4f}'
|
105 |
+
logging.info(log_str)
|
106 |
+
# log_str = f'data time = {self.timer.data_diff:.4f}s, runing time = {self.timer.running_diff:.4f}s'
|
107 |
+
# logging.info(log_str)
|
108 |
+
|
109 |
+
if iteration % self.eval_iters == 0:
|
110 |
+
# TODO: or remove time to on_epoch_end
|
111 |
+
# 1. Record time
|
112 |
+
log_str = f'average data time = {self.timer.average_data_time():.4f}s, ' \
|
113 |
+
f'average running time = {self.timer.average_running_time():.4f}s'
|
114 |
+
logging.info(log_str)
|
115 |
+
|
116 |
+
# 2. Call validate
|
117 |
+
last_metrics = self._validate()
|
118 |
+
self.learn.model.train()
|
119 |
+
log_str = f'epoch {epoch} iter {iteration}: eval loss = {last_metrics[0]:6.4f}, ' \
|
120 |
+
f'ccr = {last_metrics[1]:6.4f}, cwr = {last_metrics[2]:6.4f}, ' \
|
121 |
+
f'ted = {last_metrics[3]:6.4f}, ned = {last_metrics[4]:6.4f}, ' \
|
122 |
+
f'ted/w = {last_metrics[5]:6.4f}, '
|
123 |
+
logging.info(log_str)
|
124 |
+
names = ['eval_loss', 'ccr', 'cwr', 'ted', 'ned', 'ted/w']
|
125 |
+
self._write_metrics(iteration, names, last_metrics)
|
126 |
+
|
127 |
+
# 3. Save best model
|
128 |
+
current = last_metrics[2]
|
129 |
+
if current is not None and current > self.best:
|
130 |
+
logging.info(f'Better model found at epoch {epoch}, '\
|
131 |
+
f'iter {iteration} with accuracy value: {current:6.4f}.')
|
132 |
+
self.best = current
|
133 |
+
self._save(f'{self.bestname}')
|
134 |
+
|
135 |
+
if iteration % self.save_iters == 0 and self.host:
|
136 |
+
logging.info(f'Save model {self.name}_{epoch}_{iteration}')
|
137 |
+
filename = f'{self.name}_{epoch}_{iteration}'
|
138 |
+
self._save(filename)
|
139 |
+
|
140 |
+
checkpoint_path = self.learn.path/'checkpoint.yaml'
|
141 |
+
if not checkpoint_path.exists():
|
142 |
+
open(checkpoint_path, 'w').close()
|
143 |
+
with open(checkpoint_path, 'r') as file:
|
144 |
+
checkpoints = yaml.load(file, Loader=yaml.FullLoader) or dict()
|
145 |
+
checkpoints['all_checkpoints'] = (
|
146 |
+
checkpoints.get('all_checkpoints') or list())
|
147 |
+
checkpoints['all_checkpoints'].insert(0, filename)
|
148 |
+
if len(checkpoints['all_checkpoints']) > self.checpoint_keep_num:
|
149 |
+
removed_checkpoint = checkpoints['all_checkpoints'].pop()
|
150 |
+
removed_checkpoint = self.learn.path/self.learn.model_dir/f'{removed_checkpoint}.pth'
|
151 |
+
os.remove(removed_checkpoint)
|
152 |
+
checkpoints['current_checkpoint'] = filename
|
153 |
+
with open(checkpoint_path, 'w') as file:
|
154 |
+
yaml.dump(checkpoints, file)
|
155 |
+
|
156 |
+
|
157 |
+
self.timer.toc_running()
|
158 |
+
|
159 |
+
def on_train_end(self, **kwargs):
|
160 |
+
#self.learn.load(f'{self.bestname}', purge=False)
|
161 |
+
pass
|
162 |
+
|
163 |
+
def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs)->None:
|
164 |
+
self._write_embedding(iteration=iteration)
|
165 |
+
|
166 |
+
|
167 |
+
class TextAccuracy(Callback):
|
168 |
+
_names = ['ccr', 'cwr', 'ted', 'ned', 'ted/w']
|
169 |
+
def __init__(self, charset_path, max_length, case_sensitive, model_eval):
|
170 |
+
self.charset_path = charset_path
|
171 |
+
self.max_length = max_length
|
172 |
+
self.case_sensitive = case_sensitive
|
173 |
+
self.charset = CharsetMapper(charset_path, self.max_length)
|
174 |
+
self.names = self._names
|
175 |
+
|
176 |
+
self.model_eval = model_eval or 'alignment'
|
177 |
+
assert self.model_eval in ['vision', 'language', 'alignment']
|
178 |
+
|
179 |
+
def on_epoch_begin(self, **kwargs):
|
180 |
+
self.total_num_char = 0.
|
181 |
+
self.total_num_word = 0.
|
182 |
+
self.correct_num_char = 0.
|
183 |
+
self.correct_num_word = 0.
|
184 |
+
self.total_ed = 0.
|
185 |
+
self.total_ned = 0.
|
186 |
+
|
187 |
+
def _get_output(self, last_output):
|
188 |
+
if isinstance(last_output, (tuple, list)):
|
189 |
+
for res in last_output:
|
190 |
+
if res['name'] == self.model_eval: output = res
|
191 |
+
else: output = last_output
|
192 |
+
return output
|
193 |
+
|
194 |
+
def _update_output(self, last_output, items):
|
195 |
+
if isinstance(last_output, (tuple, list)):
|
196 |
+
for res in last_output:
|
197 |
+
if res['name'] == self.model_eval: res.update(items)
|
198 |
+
else: last_output.update(items)
|
199 |
+
return last_output
|
200 |
+
|
201 |
+
def on_batch_end(self, last_output, last_target, **kwargs):
|
202 |
+
output = self._get_output(last_output)
|
203 |
+
logits, pt_lengths = output['logits'], output['pt_lengths']
|
204 |
+
pt_text, pt_scores, pt_lengths_ = self.decode(logits)
|
205 |
+
assert (pt_lengths == pt_lengths_).all(), f'{pt_lengths} != {pt_lengths_} for {pt_text}'
|
206 |
+
last_output = self._update_output(last_output, {'pt_text':pt_text, 'pt_scores':pt_scores})
|
207 |
+
|
208 |
+
pt_text = [self.charset.trim(t) for t in pt_text]
|
209 |
+
label = last_target[0]
|
210 |
+
if label.dim() == 3: label = label.argmax(dim=-1) # one-hot label
|
211 |
+
gt_text = [self.charset.get_text(l, trim=True) for l in label]
|
212 |
+
|
213 |
+
for i in range(len(gt_text)):
|
214 |
+
if not self.case_sensitive:
|
215 |
+
gt_text[i], pt_text[i] = gt_text[i].lower(), pt_text[i].lower()
|
216 |
+
distance = ed.eval(gt_text[i], pt_text[i])
|
217 |
+
self.total_ed += distance
|
218 |
+
self.total_ned += float(distance) / max(len(gt_text[i]), 1)
|
219 |
+
|
220 |
+
if gt_text[i] == pt_text[i]:
|
221 |
+
self.correct_num_word += 1
|
222 |
+
self.total_num_word += 1
|
223 |
+
|
224 |
+
for j in range(min(len(gt_text[i]), len(pt_text[i]))):
|
225 |
+
if gt_text[i][j] == pt_text[i][j]:
|
226 |
+
self.correct_num_char += 1
|
227 |
+
self.total_num_char += len(gt_text[i])
|
228 |
+
|
229 |
+
return {'last_output': last_output}
|
230 |
+
|
231 |
+
def on_epoch_end(self, last_metrics, **kwargs):
|
232 |
+
mets = [self.correct_num_char / self.total_num_char,
|
233 |
+
self.correct_num_word / self.total_num_word,
|
234 |
+
self.total_ed,
|
235 |
+
self.total_ned,
|
236 |
+
self.total_ed / self.total_num_word]
|
237 |
+
return add_metrics(last_metrics, mets)
|
238 |
+
|
239 |
+
def decode(self, logit):
|
240 |
+
""" Greed decode """
|
241 |
+
# TODO: test running time and decode on GPU
|
242 |
+
out = F.softmax(logit, dim=2)
|
243 |
+
pt_text, pt_scores, pt_lengths = [], [], []
|
244 |
+
for o in out:
|
245 |
+
text = self.charset.get_text(o.argmax(dim=1), padding=False, trim=False)
|
246 |
+
text = text.split(self.charset.null_char)[0] # end at end-token
|
247 |
+
pt_text.append(text)
|
248 |
+
pt_scores.append(o.max(dim=1)[0])
|
249 |
+
pt_lengths.append(min(len(text) + 1, self.max_length)) # one for end-token
|
250 |
+
pt_scores = torch.stack(pt_scores)
|
251 |
+
pt_lengths = pt_scores.new_tensor(pt_lengths, dtype=torch.long)
|
252 |
+
return pt_text, pt_scores, pt_lengths
|
253 |
+
|
254 |
+
|
255 |
+
class TopKTextAccuracy(TextAccuracy):
|
256 |
+
_names = ['ccr', 'cwr']
|
257 |
+
def __init__(self, k, charset_path, max_length, case_sensitive, model_eval):
|
258 |
+
self.k = k
|
259 |
+
self.charset_path = charset_path
|
260 |
+
self.max_length = max_length
|
261 |
+
self.case_sensitive = case_sensitive
|
262 |
+
self.charset = CharsetMapper(charset_path, self.max_length)
|
263 |
+
self.names = self._names
|
264 |
+
|
265 |
+
def on_epoch_begin(self, **kwargs):
|
266 |
+
self.total_num_char = 0.
|
267 |
+
self.total_num_word = 0.
|
268 |
+
self.correct_num_char = 0.
|
269 |
+
self.correct_num_word = 0.
|
270 |
+
|
271 |
+
def on_batch_end(self, last_output, last_target, **kwargs):
|
272 |
+
logits, pt_lengths = last_output['logits'], last_output['pt_lengths']
|
273 |
+
gt_labels, gt_lengths = last_target[:]
|
274 |
+
|
275 |
+
for logit, pt_length, label, length in zip(logits, pt_lengths, gt_labels, gt_lengths):
|
276 |
+
word_flag = True
|
277 |
+
for i in range(length):
|
278 |
+
char_logit = logit[i].topk(self.k)[1]
|
279 |
+
char_label = label[i].argmax(-1)
|
280 |
+
if char_label in char_logit: self.correct_num_char += 1
|
281 |
+
else: word_flag = False
|
282 |
+
self.total_num_char += 1
|
283 |
+
if pt_length == length and word_flag:
|
284 |
+
self.correct_num_word += 1
|
285 |
+
self.total_num_word += 1
|
286 |
+
|
287 |
+
def on_epoch_end(self, last_metrics, **kwargs):
|
288 |
+
mets = [self.correct_num_char / self.total_num_char,
|
289 |
+
self.correct_num_word / self.total_num_word,
|
290 |
+
0., 0., 0.]
|
291 |
+
return add_metrics(last_metrics, mets)
|
292 |
+
|
293 |
+
|
294 |
+
class DumpPrediction(LearnerCallback):
|
295 |
+
|
296 |
+
def __init__(self, learn, dataset, charset_path, model_eval, image_only=False, debug=False):
|
297 |
+
super().__init__(learn=learn)
|
298 |
+
self.debug = debug
|
299 |
+
self.model_eval = model_eval or 'alignment'
|
300 |
+
self.image_only = image_only
|
301 |
+
assert self.model_eval in ['vision', 'language', 'alignment']
|
302 |
+
|
303 |
+
self.dataset, self.root = dataset, Path(self.learn.path)/f'{dataset}-{self.model_eval}'
|
304 |
+
self.attn_root = self.root/'attn'
|
305 |
+
self.charset = CharsetMapper(charset_path)
|
306 |
+
if self.root.exists(): shutil.rmtree(self.root)
|
307 |
+
self.root.mkdir(), self.attn_root.mkdir()
|
308 |
+
|
309 |
+
self.pil = transforms.ToPILImage()
|
310 |
+
self.tensor = transforms.ToTensor()
|
311 |
+
size = self.learn.data.img_h, self.learn.data.img_w
|
312 |
+
self.resize = transforms.Resize(size=size, interpolation=0)
|
313 |
+
self.c = 0
|
314 |
+
|
315 |
+
def on_batch_end(self, last_input, last_output, last_target, **kwargs):
|
316 |
+
if isinstance(last_output, (tuple, list)):
|
317 |
+
for res in last_output:
|
318 |
+
if res['name'] == self.model_eval: pt_text = res['pt_text']
|
319 |
+
if res['name'] == 'vision': attn_scores = res['attn_scores'].detach().cpu()
|
320 |
+
if res['name'] == self.model_eval: logits = res['logits']
|
321 |
+
else:
|
322 |
+
pt_text = last_output['pt_text']
|
323 |
+
attn_scores = last_output['attn_scores'].detach().cpu()
|
324 |
+
logits = last_output['logits']
|
325 |
+
|
326 |
+
images = last_input[0] if isinstance(last_input, (tuple, list)) else last_input
|
327 |
+
images = images.detach().cpu()
|
328 |
+
pt_text = [self.charset.trim(t) for t in pt_text]
|
329 |
+
gt_label = last_target[0]
|
330 |
+
if gt_label.dim() == 3: gt_label = gt_label.argmax(dim=-1) # one-hot label
|
331 |
+
gt_text = [self.charset.get_text(l, trim=True) for l in gt_label]
|
332 |
+
|
333 |
+
prediction, false_prediction = [], []
|
334 |
+
for gt, pt, image, attn, logit in zip(gt_text, pt_text, images, attn_scores, logits):
|
335 |
+
prediction.append(f'{gt}\t{pt}\n')
|
336 |
+
if gt != pt:
|
337 |
+
if self.debug:
|
338 |
+
scores = torch.softmax(logit, dim=-1)[:max(len(pt), len(gt)) + 1]
|
339 |
+
logging.info(f'{self.c} gt {gt}, pt {pt}, logit {logit.shape}, scores {scores.topk(5, dim=-1)}')
|
340 |
+
false_prediction.append(f'{gt}\t{pt}\n')
|
341 |
+
|
342 |
+
image = self.learn.data.denorm(image)
|
343 |
+
if not self.image_only:
|
344 |
+
image_np = np.array(self.pil(image))
|
345 |
+
attn_pil = [self.pil(a) for a in attn[:, None, :, :]]
|
346 |
+
attn = [self.tensor(self.resize(a)).repeat(3, 1, 1) for a in attn_pil]
|
347 |
+
attn_sum = np.array([np.array(a) for a in attn_pil[:len(pt)]]).sum(axis=0)
|
348 |
+
blended_sum = self.tensor(blend_mask(image_np, attn_sum))
|
349 |
+
blended = [self.tensor(blend_mask(image_np, np.array(a))) for a in attn_pil]
|
350 |
+
save_image = torch.stack([image] + attn + [blended_sum] + blended)
|
351 |
+
save_image = save_image.view(2, -1, *save_image.shape[1:])
|
352 |
+
save_image = save_image.permute(1, 0, 2, 3, 4).flatten(0, 1)
|
353 |
+
vutils.save_image(save_image, self.attn_root/f'{self.c}_{gt}_{pt}.jpg',
|
354 |
+
nrow=2, normalize=True, scale_each=True)
|
355 |
+
else:
|
356 |
+
self.pil(image).save(self.attn_root/f'{self.c}_{gt}_{pt}.jpg')
|
357 |
+
self.c += 1
|
358 |
+
|
359 |
+
with open(self.root/f'{self.model_eval}.txt', 'a') as f: f.writelines(prediction)
|
360 |
+
with open(self.root/f'{self.model_eval}-false.txt', 'a') as f: f.writelines(false_prediction)
|
dataset.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import lmdb
|
6 |
+
import six
|
7 |
+
from fastai.vision import *
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
from transforms import CVColorJitter, CVDeterioration, CVGeometry
|
11 |
+
from utils import CharsetMapper, onehot
|
12 |
+
|
13 |
+
|
14 |
+
class ImageDataset(Dataset):
|
15 |
+
"`ImageDataset` read data from LMDB database."
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
path:PathOrStr,
|
19 |
+
is_training:bool=True,
|
20 |
+
img_h:int=32,
|
21 |
+
img_w:int=100,
|
22 |
+
max_length:int=25,
|
23 |
+
check_length:bool=True,
|
24 |
+
case_sensitive:bool=False,
|
25 |
+
charset_path:str='data/charset_36.txt',
|
26 |
+
convert_mode:str='RGB',
|
27 |
+
data_aug:bool=True,
|
28 |
+
deteriorate_ratio:float=0.,
|
29 |
+
multiscales:bool=True,
|
30 |
+
one_hot_y:bool=True,
|
31 |
+
return_idx:bool=False,
|
32 |
+
return_raw:bool=False,
|
33 |
+
**kwargs):
|
34 |
+
self.path, self.name = Path(path), Path(path).name
|
35 |
+
assert self.path.is_dir() and self.path.exists(), f"{path} is not a valid directory."
|
36 |
+
self.convert_mode, self.check_length = convert_mode, check_length
|
37 |
+
self.img_h, self.img_w = img_h, img_w
|
38 |
+
self.max_length, self.one_hot_y = max_length, one_hot_y
|
39 |
+
self.return_idx, self.return_raw = return_idx, return_raw
|
40 |
+
self.case_sensitive, self.is_training = case_sensitive, is_training
|
41 |
+
self.data_aug, self.multiscales = data_aug, multiscales
|
42 |
+
self.charset = CharsetMapper(charset_path, max_length=max_length+1)
|
43 |
+
self.c = self.charset.num_classes
|
44 |
+
|
45 |
+
self.env = lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False)
|
46 |
+
assert self.env, f'Cannot open LMDB dataset from {path}.'
|
47 |
+
with self.env.begin(write=False) as txn:
|
48 |
+
self.length = int(txn.get('num-samples'.encode()))
|
49 |
+
|
50 |
+
if self.is_training and self.data_aug:
|
51 |
+
self.augment_tfs = transforms.Compose([
|
52 |
+
CVGeometry(degrees=45, translate=(0.0, 0.0), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5),
|
53 |
+
CVDeterioration(var=20, degrees=6, factor=4, p=0.25),
|
54 |
+
CVColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.25)
|
55 |
+
])
|
56 |
+
self.totensor = transforms.ToTensor()
|
57 |
+
|
58 |
+
def __len__(self): return self.length
|
59 |
+
|
60 |
+
def _next_image(self, index):
|
61 |
+
next_index = random.randint(0, len(self) - 1)
|
62 |
+
return self.get(next_index)
|
63 |
+
|
64 |
+
def _check_image(self, x, pixels=6):
|
65 |
+
if x.size[0] <= pixels or x.size[1] <= pixels: return False
|
66 |
+
else: return True
|
67 |
+
|
68 |
+
def resize_multiscales(self, img, borderType=cv2.BORDER_CONSTANT):
|
69 |
+
def _resize_ratio(img, ratio, fix_h=True):
|
70 |
+
if ratio * self.img_w < self.img_h:
|
71 |
+
if fix_h: trg_h = self.img_h
|
72 |
+
else: trg_h = int(ratio * self.img_w)
|
73 |
+
trg_w = self.img_w
|
74 |
+
else: trg_h, trg_w = self.img_h, int(self.img_h / ratio)
|
75 |
+
img = cv2.resize(img, (trg_w, trg_h))
|
76 |
+
pad_h, pad_w = (self.img_h - trg_h) / 2, (self.img_w - trg_w) / 2
|
77 |
+
top, bottom = math.ceil(pad_h), math.floor(pad_h)
|
78 |
+
left, right = math.ceil(pad_w), math.floor(pad_w)
|
79 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType)
|
80 |
+
return img
|
81 |
+
|
82 |
+
if self.is_training:
|
83 |
+
if random.random() < 0.5:
|
84 |
+
base, maxh, maxw = self.img_h, self.img_h, self.img_w
|
85 |
+
h, w = random.randint(base, maxh), random.randint(base, maxw)
|
86 |
+
return _resize_ratio(img, h/w)
|
87 |
+
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio
|
88 |
+
else: return _resize_ratio(img, img.shape[0] / img.shape[1]) # keep aspect ratio
|
89 |
+
|
90 |
+
def resize(self, img):
|
91 |
+
if self.multiscales: return self.resize_multiscales(img, cv2.BORDER_REPLICATE)
|
92 |
+
else: return cv2.resize(img, (self.img_w, self.img_h))
|
93 |
+
|
94 |
+
def get(self, idx):
|
95 |
+
with self.env.begin(write=False) as txn:
|
96 |
+
image_key, label_key = f'image-{idx+1:09d}', f'label-{idx+1:09d}'
|
97 |
+
try:
|
98 |
+
label = str(txn.get(label_key.encode()), 'utf-8') # label
|
99 |
+
label = re.sub('[^0-9a-zA-Z]+', '', label)
|
100 |
+
if self.check_length and self.max_length > 0:
|
101 |
+
if len(label) > self.max_length or len(label) <= 0:
|
102 |
+
#logging.info(f'Long or short text image is found: {self.name}, {idx}, {label}, {len(label)}')
|
103 |
+
return self._next_image(idx)
|
104 |
+
label = label[:self.max_length]
|
105 |
+
|
106 |
+
imgbuf = txn.get(image_key.encode()) # image
|
107 |
+
buf = six.BytesIO()
|
108 |
+
buf.write(imgbuf)
|
109 |
+
buf.seek(0)
|
110 |
+
with warnings.catch_warnings():
|
111 |
+
warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin
|
112 |
+
image = PIL.Image.open(buf).convert(self.convert_mode)
|
113 |
+
if self.is_training and not self._check_image(image):
|
114 |
+
#logging.info(f'Invalid image is found: {self.name}, {idx}, {label}, {len(label)}')
|
115 |
+
return self._next_image(idx)
|
116 |
+
except:
|
117 |
+
import traceback
|
118 |
+
traceback.print_exc()
|
119 |
+
logging.info(f'Corrupted image is found: {self.name}, {idx}, {label}, {len(label)}')
|
120 |
+
return self._next_image(idx)
|
121 |
+
return image, label, idx
|
122 |
+
|
123 |
+
def _process_training(self, image):
|
124 |
+
if self.data_aug: image = self.augment_tfs(image)
|
125 |
+
image = self.resize(np.array(image))
|
126 |
+
return image
|
127 |
+
|
128 |
+
def _process_test(self, image):
|
129 |
+
return self.resize(np.array(image)) # TODO:move is_training to here
|
130 |
+
|
131 |
+
def __getitem__(self, idx):
|
132 |
+
image, text, idx_new = self.get(idx)
|
133 |
+
if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.'
|
134 |
+
|
135 |
+
if self.is_training: image = self._process_training(image)
|
136 |
+
else: image = self._process_test(image)
|
137 |
+
if self.return_raw: return image, text
|
138 |
+
image = self.totensor(image)
|
139 |
+
|
140 |
+
length = tensor(len(text) + 1).to(dtype=torch.long) # one for end token
|
141 |
+
label = self.charset.get_labels(text, case_sensitive=self.case_sensitive)
|
142 |
+
label = tensor(label).to(dtype=torch.long)
|
143 |
+
if self.one_hot_y: label = onehot(label, self.charset.num_classes)
|
144 |
+
|
145 |
+
if self.return_idx: y = [label, length, idx_new]
|
146 |
+
else: y = [label, length]
|
147 |
+
return image, y
|
148 |
+
|
149 |
+
|
150 |
+
class TextDataset(Dataset):
|
151 |
+
def __init__(self,
|
152 |
+
path:PathOrStr,
|
153 |
+
delimiter:str='\t',
|
154 |
+
max_length:int=25,
|
155 |
+
charset_path:str='data/charset_36.txt',
|
156 |
+
case_sensitive=False,
|
157 |
+
one_hot_x=True,
|
158 |
+
one_hot_y=True,
|
159 |
+
is_training=True,
|
160 |
+
smooth_label=False,
|
161 |
+
smooth_factor=0.2,
|
162 |
+
use_sm=False,
|
163 |
+
**kwargs):
|
164 |
+
self.path = Path(path)
|
165 |
+
self.case_sensitive, self.use_sm = case_sensitive, use_sm
|
166 |
+
self.smooth_factor, self.smooth_label = smooth_factor, smooth_label
|
167 |
+
self.charset = CharsetMapper(charset_path, max_length=max_length+1)
|
168 |
+
self.one_hot_x, self.one_hot_y, self.is_training = one_hot_x, one_hot_y, is_training
|
169 |
+
if self.is_training and self.use_sm: self.sm = SpellingMutation(charset=self.charset)
|
170 |
+
|
171 |
+
dtype = {'inp': str, 'gt': str}
|
172 |
+
self.df = pd.read_csv(self.path, dtype=dtype, delimiter=delimiter, na_filter=False)
|
173 |
+
self.inp_col, self.gt_col = 0, 1
|
174 |
+
|
175 |
+
def __len__(self): return len(self.df)
|
176 |
+
|
177 |
+
def __getitem__(self, idx):
|
178 |
+
text_x = self.df.iloc[idx, self.inp_col]
|
179 |
+
text_x = re.sub('[^0-9a-zA-Z]+', '', text_x)
|
180 |
+
if not self.case_sensitive: text_x = text_x.lower()
|
181 |
+
if self.is_training and self.use_sm: text_x = self.sm(text_x)
|
182 |
+
|
183 |
+
length_x = tensor(len(text_x) + 1).to(dtype=torch.long) # one for end token
|
184 |
+
label_x = self.charset.get_labels(text_x, case_sensitive=self.case_sensitive)
|
185 |
+
label_x = tensor(label_x)
|
186 |
+
if self.one_hot_x:
|
187 |
+
label_x = onehot(label_x, self.charset.num_classes)
|
188 |
+
if self.is_training and self.smooth_label:
|
189 |
+
label_x = torch.stack([self.prob_smooth_label(l) for l in label_x])
|
190 |
+
x = [label_x, length_x]
|
191 |
+
|
192 |
+
text_y = self.df.iloc[idx, self.gt_col]
|
193 |
+
text_y = re.sub('[^0-9a-zA-Z]+', '', text_y)
|
194 |
+
if not self.case_sensitive: text_y = text_y.lower()
|
195 |
+
length_y = tensor(len(text_y) + 1).to(dtype=torch.long) # one for end token
|
196 |
+
label_y = self.charset.get_labels(text_y, case_sensitive=self.case_sensitive)
|
197 |
+
label_y = tensor(label_y)
|
198 |
+
if self.one_hot_y: label_y = onehot(label_y, self.charset.num_classes)
|
199 |
+
y = [label_y, length_y]
|
200 |
+
|
201 |
+
return x, y
|
202 |
+
|
203 |
+
def prob_smooth_label(self, one_hot):
|
204 |
+
one_hot = one_hot.float()
|
205 |
+
delta = torch.rand([]) * self.smooth_factor
|
206 |
+
num_classes = len(one_hot)
|
207 |
+
noise = torch.rand(num_classes)
|
208 |
+
noise = noise / noise.sum() * delta
|
209 |
+
one_hot = one_hot * (1 - delta) + noise
|
210 |
+
return one_hot
|
211 |
+
|
212 |
+
|
213 |
+
class SpellingMutation(object):
|
214 |
+
def __init__(self, pn0=0.7, pn1=0.85, pn2=0.95, pt0=0.7, pt1=0.85, charset=None):
|
215 |
+
"""
|
216 |
+
Args:
|
217 |
+
pn0: the prob of not modifying characters is (pn0)
|
218 |
+
pn1: the prob of modifying one characters is (pn1 - pn0)
|
219 |
+
pn2: the prob of modifying two characters is (pn2 - pn1),
|
220 |
+
and three (1 - pn2)
|
221 |
+
pt0: the prob of replacing operation is pt0.
|
222 |
+
pt1: the prob of inserting operation is (pt1 - pt0),
|
223 |
+
and deleting operation is (1 - pt1)
|
224 |
+
"""
|
225 |
+
super().__init__()
|
226 |
+
self.pn0, self.pn1, self.pn2 = pn0, pn1, pn2
|
227 |
+
self.pt0, self.pt1 = pt0, pt1
|
228 |
+
self.charset = charset
|
229 |
+
logging.info(f'the probs: pn0={self.pn0}, pn1={self.pn1} ' +
|
230 |
+
f'pn2={self.pn2}, pt0={self.pt0}, pt1={self.pt1}')
|
231 |
+
|
232 |
+
def is_digit(self, text, ratio=0.5):
|
233 |
+
length = max(len(text), 1)
|
234 |
+
digit_num = sum([t in self.charset.digits for t in text])
|
235 |
+
if digit_num / length < ratio: return False
|
236 |
+
return True
|
237 |
+
|
238 |
+
def is_unk_char(self, char):
|
239 |
+
# return char == self.charset.unk_char
|
240 |
+
return (char not in self.charset.digits) and (char not in self.charset.alphabets)
|
241 |
+
|
242 |
+
def get_num_to_modify(self, length):
|
243 |
+
prob = random.random()
|
244 |
+
if prob < self.pn0: num_to_modify = 0
|
245 |
+
elif prob < self.pn1: num_to_modify = 1
|
246 |
+
elif prob < self.pn2: num_to_modify = 2
|
247 |
+
else: num_to_modify = 3
|
248 |
+
|
249 |
+
if length <= 1: num_to_modify = 0
|
250 |
+
elif length >= 2 and length <= 4: num_to_modify = min(num_to_modify, 1)
|
251 |
+
else: num_to_modify = min(num_to_modify, length // 2) # smaller than length // 2
|
252 |
+
return num_to_modify
|
253 |
+
|
254 |
+
def __call__(self, text, debug=False):
|
255 |
+
if self.is_digit(text): return text
|
256 |
+
length = len(text)
|
257 |
+
num_to_modify = self.get_num_to_modify(length)
|
258 |
+
if num_to_modify <= 0: return text
|
259 |
+
|
260 |
+
chars = []
|
261 |
+
index = np.arange(0, length)
|
262 |
+
random.shuffle(index)
|
263 |
+
index = index[: num_to_modify]
|
264 |
+
if debug: self.index = index
|
265 |
+
for i, t in enumerate(text):
|
266 |
+
if i not in index: chars.append(t)
|
267 |
+
elif self.is_unk_char(t): chars.append(t)
|
268 |
+
else:
|
269 |
+
prob = random.random()
|
270 |
+
if prob < self.pt0: # replace
|
271 |
+
chars.append(random.choice(self.charset.alphabets))
|
272 |
+
elif prob < self.pt1: # insert
|
273 |
+
chars.append(random.choice(self.charset.alphabets))
|
274 |
+
chars.append(t)
|
275 |
+
else: # delete
|
276 |
+
continue
|
277 |
+
new_text = ''.join(chars[: self.charset.max_length-1])
|
278 |
+
return new_text if len(new_text) >= 1 else text
|
demo.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import glob
|
5 |
+
import tqdm
|
6 |
+
import torch
|
7 |
+
import PIL
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torchvision import transforms
|
12 |
+
from utils import Config, Logger, CharsetMapper
|
13 |
+
|
14 |
+
def get_model(config):
|
15 |
+
import importlib
|
16 |
+
names = config.model_name.split('.')
|
17 |
+
module_name, class_name = '.'.join(names[:-1]), names[-1]
|
18 |
+
cls = getattr(importlib.import_module(module_name), class_name)
|
19 |
+
model = cls(config)
|
20 |
+
logging.info(model)
|
21 |
+
model = model.eval()
|
22 |
+
return model
|
23 |
+
|
24 |
+
def preprocess(img, width, height):
|
25 |
+
img = cv2.resize(np.array(img), (width, height))
|
26 |
+
img = transforms.ToTensor()(img).unsqueeze(0)
|
27 |
+
mean = torch.tensor([0.485, 0.456, 0.406])
|
28 |
+
std = torch.tensor([0.229, 0.224, 0.225])
|
29 |
+
return (img-mean[...,None,None]) / std[...,None,None]
|
30 |
+
|
31 |
+
def postprocess(output, charset, model_eval):
|
32 |
+
def _get_output(last_output, model_eval):
|
33 |
+
if isinstance(last_output, (tuple, list)):
|
34 |
+
for res in last_output:
|
35 |
+
if res['name'] == model_eval: output = res
|
36 |
+
else: output = last_output
|
37 |
+
return output
|
38 |
+
|
39 |
+
def _decode(logit):
|
40 |
+
""" Greed decode """
|
41 |
+
out = F.softmax(logit, dim=2)
|
42 |
+
pt_text, pt_scores, pt_lengths = [], [], []
|
43 |
+
for o in out:
|
44 |
+
text = charset.get_text(o.argmax(dim=1), padding=False, trim=False)
|
45 |
+
text = text.split(charset.null_char)[0] # end at end-token
|
46 |
+
pt_text.append(text)
|
47 |
+
pt_scores.append(o.max(dim=1)[0])
|
48 |
+
pt_lengths.append(min(len(text) + 1, charset.max_length)) # one for end-token
|
49 |
+
return pt_text, pt_scores, pt_lengths
|
50 |
+
|
51 |
+
output = _get_output(output, model_eval)
|
52 |
+
logits, pt_lengths = output['logits'], output['pt_lengths']
|
53 |
+
pt_text, pt_scores, pt_lengths_ = _decode(logits)
|
54 |
+
|
55 |
+
return pt_text, pt_scores, pt_lengths_
|
56 |
+
|
57 |
+
def load(model, file, device=None, strict=True):
|
58 |
+
if device is None: device = 'cpu'
|
59 |
+
elif isinstance(device, int): device = torch.device('cuda', device)
|
60 |
+
assert os.path.isfile(file)
|
61 |
+
state = torch.load(file, map_location=device)
|
62 |
+
if set(state.keys()) == {'model', 'opt'}:
|
63 |
+
state = state['model']
|
64 |
+
model.load_state_dict(state, strict=strict)
|
65 |
+
return model
|
66 |
+
|
67 |
+
def main():
|
68 |
+
parser = argparse.ArgumentParser()
|
69 |
+
parser.add_argument('--config', type=str, default='configs/train_abinet.yaml',
|
70 |
+
help='path to config file')
|
71 |
+
parser.add_argument('--input', type=str, default='figs/test')
|
72 |
+
parser.add_argument('--cuda', type=int, default=-1)
|
73 |
+
parser.add_argument('--checkpoint', type=str, default='workdir/train-abinet/best-train-abinet.pth')
|
74 |
+
parser.add_argument('--model_eval', type=str, default='alignment',
|
75 |
+
choices=['alignment', 'vision', 'language'])
|
76 |
+
args = parser.parse_args()
|
77 |
+
config = Config(args.config)
|
78 |
+
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
|
79 |
+
if args.model_eval is not None: config.model_eval = args.model_eval
|
80 |
+
config.global_phase = 'test'
|
81 |
+
config.model_vision_checkpoint, config.model_language_checkpoint = None, None
|
82 |
+
device = 'cpu' if args.cuda < 0 else f'cuda:{args.cuda}'
|
83 |
+
|
84 |
+
Logger.init(config.global_workdir, config.global_name, config.global_phase)
|
85 |
+
Logger.enable_file()
|
86 |
+
logging.info(config)
|
87 |
+
|
88 |
+
logging.info('Construct model.')
|
89 |
+
model = get_model(config).to(device)
|
90 |
+
model = load(model, config.model_checkpoint, device=device)
|
91 |
+
charset = CharsetMapper(filename=config.dataset_charset_path,
|
92 |
+
max_length=config.dataset_max_length + 1)
|
93 |
+
|
94 |
+
if os.path.isdir(args.input):
|
95 |
+
paths = [os.path.join(args.input, fname) for fname in os.listdir(args.input)]
|
96 |
+
else:
|
97 |
+
paths = glob.glob(os.path.expanduser(args.input))
|
98 |
+
assert paths, "The input path(s) was not found"
|
99 |
+
paths = sorted(paths)
|
100 |
+
for path in tqdm.tqdm(paths):
|
101 |
+
img = PIL.Image.open(path).convert('RGB')
|
102 |
+
img = preprocess(img, config.dataset_image_width, config.dataset_image_height)
|
103 |
+
img = img.to(device)
|
104 |
+
res = model(img)
|
105 |
+
pt_text, _, __ = postprocess(res, charset, config.model_eval)
|
106 |
+
logging.info(f'{path}: {pt_text[0]}')
|
107 |
+
|
108 |
+
if __name__ == '__main__':
|
109 |
+
main()
|
docker/Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM anibali/pytorch:cuda-9.0
|
2 |
+
MAINTAINER fangshancheng <[email protected]>
|
3 |
+
RUN sudo rm -rf /etc/apt/sources.list.d && \
|
4 |
+
sudo apt update && \
|
5 |
+
sudo apt install -y build-essential vim && \
|
6 |
+
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/ && \
|
7 |
+
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/ && \
|
8 |
+
conda config --set show_channel_urls yes && \
|
9 |
+
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ && \
|
10 |
+
pip install torch==1.1.0 torchvision==0.3.0 && \
|
11 |
+
pip install fastai==1.0.60 && \
|
12 |
+
pip install ipdb jupyter ipython lmdb editdistance tensorboardX natsort nltk && \
|
13 |
+
conda uninstall -y --force pillow pil jpeg libtiff libjpeg-turbo && \
|
14 |
+
pip uninstall -y pillow pil jpeg libtiff libjpeg-turbo && \
|
15 |
+
conda install -yc conda-forge libjpeg-turbo && \
|
16 |
+
CFLAGS="${CFLAGS} -mavx2" pip install --no-cache-dir --force-reinstall --no-binary :all: --compile pillow-simd==6.2.2.post1 && \
|
17 |
+
conda install -y jpeg libtiff opencv && \
|
18 |
+
sudo rm -rf /var/lib/apt/lists/* && \
|
19 |
+
sudo rm -rf /tmp/* && \
|
20 |
+
sudo rm -rf ~/.cache && \
|
21 |
+
sudo apt clean all && \
|
22 |
+
conda clean -y -a
|
23 |
+
EXPOSE 8888
|
24 |
+
ENV LANG C.UTF-8
|
25 |
+
ENV LC_ALL C.UTF-8
|
figs/cases.png
ADDED
figs/framework.png
ADDED
figs/test/CANDY.png
ADDED
figs/test/ESPLANADE.png
ADDED
figs/test/GLOBE.png
ADDED
figs/test/KAPPA.png
ADDED
figs/test/MANDARIN.png
ADDED
figs/test/MEETS.png
ADDED
figs/test/MONTHLY.png
ADDED
figs/test/RESTROOM.png
ADDED
losses.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastai.vision import *
|
2 |
+
|
3 |
+
from modules.model import Model
|
4 |
+
|
5 |
+
|
6 |
+
class MultiLosses(nn.Module):
|
7 |
+
def __init__(self, one_hot=True):
|
8 |
+
super().__init__()
|
9 |
+
self.ce = SoftCrossEntropyLoss() if one_hot else torch.nn.CrossEntropyLoss()
|
10 |
+
self.bce = torch.nn.BCELoss()
|
11 |
+
|
12 |
+
@property
|
13 |
+
def last_losses(self):
|
14 |
+
return self.losses
|
15 |
+
|
16 |
+
def _flatten(self, sources, lengths):
|
17 |
+
return torch.cat([t[:l] for t, l in zip(sources, lengths)])
|
18 |
+
|
19 |
+
def _merge_list(self, all_res):
|
20 |
+
if not isinstance(all_res, (list, tuple)):
|
21 |
+
return all_res
|
22 |
+
def merge(items):
|
23 |
+
if isinstance(items[0], torch.Tensor): return torch.cat(items, dim=0)
|
24 |
+
else: return items[0]
|
25 |
+
res = dict()
|
26 |
+
for key in all_res[0].keys():
|
27 |
+
items = [r[key] for r in all_res]
|
28 |
+
res[key] = merge(items)
|
29 |
+
return res
|
30 |
+
|
31 |
+
def _ce_loss(self, output, gt_labels, gt_lengths, idx=None, record=True):
|
32 |
+
loss_name = output.get('name')
|
33 |
+
pt_logits, weight = output['logits'], output['loss_weight']
|
34 |
+
|
35 |
+
assert pt_logits.shape[0] % gt_labels.shape[0] == 0
|
36 |
+
iter_size = pt_logits.shape[0] // gt_labels.shape[0]
|
37 |
+
if iter_size > 1:
|
38 |
+
gt_labels = gt_labels.repeat(3, 1, 1)
|
39 |
+
gt_lengths = gt_lengths.repeat(3)
|
40 |
+
flat_gt_labels = self._flatten(gt_labels, gt_lengths)
|
41 |
+
flat_pt_logits = self._flatten(pt_logits, gt_lengths)
|
42 |
+
|
43 |
+
nll = output.get('nll')
|
44 |
+
if nll is not None:
|
45 |
+
loss = self.ce(flat_pt_logits, flat_gt_labels, softmax=False) * weight
|
46 |
+
else:
|
47 |
+
loss = self.ce(flat_pt_logits, flat_gt_labels) * weight
|
48 |
+
if record and loss_name is not None: self.losses[f'{loss_name}_loss'] = loss
|
49 |
+
|
50 |
+
return loss
|
51 |
+
|
52 |
+
def forward(self, outputs, *args):
|
53 |
+
self.losses = {}
|
54 |
+
if isinstance(outputs, (tuple, list)):
|
55 |
+
outputs = [self._merge_list(o) for o in outputs]
|
56 |
+
return sum([self._ce_loss(o, *args) for o in outputs if o['loss_weight'] > 0.])
|
57 |
+
else:
|
58 |
+
return self._ce_loss(outputs, *args, record=False)
|
59 |
+
|
60 |
+
|
61 |
+
class SoftCrossEntropyLoss(nn.Module):
|
62 |
+
def __init__(self, reduction="mean"):
|
63 |
+
super().__init__()
|
64 |
+
self.reduction = reduction
|
65 |
+
|
66 |
+
def forward(self, input, target, softmax=True):
|
67 |
+
if softmax: log_prob = F.log_softmax(input, dim=-1)
|
68 |
+
else: log_prob = torch.log(input)
|
69 |
+
loss = -(target * log_prob).sum(dim=-1)
|
70 |
+
if self.reduction == "mean": return loss.mean()
|
71 |
+
elif self.reduction == "sum": return loss.sum()
|
72 |
+
else: return loss
|
main.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from fastai.callbacks.general_sched import GeneralScheduler, TrainingPhase
|
8 |
+
from fastai.distributed import *
|
9 |
+
from fastai.vision import *
|
10 |
+
from torch.backends import cudnn
|
11 |
+
|
12 |
+
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
|
13 |
+
from dataset import ImageDataset, TextDataset
|
14 |
+
from losses import MultiLosses
|
15 |
+
from utils import Config, Logger, MyDataParallel, MyConcatDataset
|
16 |
+
|
17 |
+
|
18 |
+
def _set_random_seed(seed):
|
19 |
+
if seed is not None:
|
20 |
+
random.seed(seed)
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
cudnn.deterministic = True
|
23 |
+
logging.warning('You have chosen to seed training. '
|
24 |
+
'This will slow down your training!')
|
25 |
+
|
26 |
+
def _get_training_phases(config, n):
|
27 |
+
lr = np.array(config.optimizer_lr)
|
28 |
+
periods = config.optimizer_scheduler_periods
|
29 |
+
sigma = [config.optimizer_scheduler_gamma ** i for i in range(len(periods))]
|
30 |
+
phases = [TrainingPhase(n * periods[i]).schedule_hp('lr', lr * sigma[i])
|
31 |
+
for i in range(len(periods))]
|
32 |
+
return phases
|
33 |
+
|
34 |
+
def _get_dataset(ds_type, paths, is_training, config, **kwargs):
|
35 |
+
kwargs.update({
|
36 |
+
'img_h': config.dataset_image_height,
|
37 |
+
'img_w': config.dataset_image_width,
|
38 |
+
'max_length': config.dataset_max_length,
|
39 |
+
'case_sensitive': config.dataset_case_sensitive,
|
40 |
+
'charset_path': config.dataset_charset_path,
|
41 |
+
'data_aug': config.dataset_data_aug,
|
42 |
+
'deteriorate_ratio': config.dataset_deteriorate_ratio,
|
43 |
+
'is_training': is_training,
|
44 |
+
'multiscales': config.dataset_multiscales,
|
45 |
+
'one_hot_y': config.dataset_one_hot_y,
|
46 |
+
})
|
47 |
+
datasets = [ds_type(p, **kwargs) for p in paths]
|
48 |
+
if len(datasets) > 1: return MyConcatDataset(datasets)
|
49 |
+
else: return datasets[0]
|
50 |
+
|
51 |
+
|
52 |
+
def _get_language_databaunch(config):
|
53 |
+
kwargs = {
|
54 |
+
'max_length': config.dataset_max_length,
|
55 |
+
'case_sensitive': config.dataset_case_sensitive,
|
56 |
+
'charset_path': config.dataset_charset_path,
|
57 |
+
'smooth_label': config.dataset_smooth_label,
|
58 |
+
'smooth_factor': config.dataset_smooth_factor,
|
59 |
+
'one_hot_y': config.dataset_one_hot_y,
|
60 |
+
'use_sm': config.dataset_use_sm,
|
61 |
+
}
|
62 |
+
train_ds = TextDataset(config.dataset_train_roots[0], is_training=True, **kwargs)
|
63 |
+
valid_ds = TextDataset(config.dataset_test_roots[0], is_training=False, **kwargs)
|
64 |
+
data = DataBunch.create(
|
65 |
+
path=train_ds.path,
|
66 |
+
train_ds=train_ds,
|
67 |
+
valid_ds=valid_ds,
|
68 |
+
bs=config.dataset_train_batch_size,
|
69 |
+
val_bs=config.dataset_test_batch_size,
|
70 |
+
num_workers=config.dataset_num_workers,
|
71 |
+
pin_memory=config.dataset_pin_memory)
|
72 |
+
logging.info(f'{len(data.train_ds)} training items found.')
|
73 |
+
if not data.empty_val:
|
74 |
+
logging.info(f'{len(data.valid_ds)} valid items found.')
|
75 |
+
return data
|
76 |
+
|
77 |
+
def _get_databaunch(config):
|
78 |
+
# An awkward way to reduce loadding data time during test
|
79 |
+
if config.global_phase == 'test': config.dataset_train_roots = config.dataset_test_roots
|
80 |
+
train_ds = _get_dataset(ImageDataset, config.dataset_train_roots, True, config)
|
81 |
+
valid_ds = _get_dataset(ImageDataset, config.dataset_test_roots, False, config)
|
82 |
+
data = ImageDataBunch.create(
|
83 |
+
train_ds=train_ds,
|
84 |
+
valid_ds=valid_ds,
|
85 |
+
bs=config.dataset_train_batch_size,
|
86 |
+
val_bs=config.dataset_test_batch_size,
|
87 |
+
num_workers=config.dataset_num_workers,
|
88 |
+
pin_memory=config.dataset_pin_memory).normalize(imagenet_stats)
|
89 |
+
ar_tfm = lambda x: ((x[0], x[1]), x[1]) # auto-regression only for dtd
|
90 |
+
data.add_tfm(ar_tfm)
|
91 |
+
|
92 |
+
logging.info(f'{len(data.train_ds)} training items found.')
|
93 |
+
if not data.empty_val:
|
94 |
+
logging.info(f'{len(data.valid_ds)} valid items found.')
|
95 |
+
|
96 |
+
return data
|
97 |
+
|
98 |
+
def _get_model(config):
|
99 |
+
import importlib
|
100 |
+
names = config.model_name.split('.')
|
101 |
+
module_name, class_name = '.'.join(names[:-1]), names[-1]
|
102 |
+
cls = getattr(importlib.import_module(module_name), class_name)
|
103 |
+
model = cls(config)
|
104 |
+
logging.info(model)
|
105 |
+
return model
|
106 |
+
|
107 |
+
|
108 |
+
def _get_learner(config, data, model, local_rank=None):
|
109 |
+
strict = ifnone(config.model_strict, True)
|
110 |
+
if config.global_stage == 'pretrain-language':
|
111 |
+
metrics = [TopKTextAccuracy(
|
112 |
+
k=ifnone(config.model_k, 5),
|
113 |
+
charset_path=config.dataset_charset_path,
|
114 |
+
max_length=config.dataset_max_length + 1,
|
115 |
+
case_sensitive=config.dataset_eval_case_sensisitves,
|
116 |
+
model_eval=config.model_eval)]
|
117 |
+
else:
|
118 |
+
metrics = [TextAccuracy(
|
119 |
+
charset_path=config.dataset_charset_path,
|
120 |
+
max_length=config.dataset_max_length + 1,
|
121 |
+
case_sensitive=config.dataset_eval_case_sensisitves,
|
122 |
+
model_eval=config.model_eval)]
|
123 |
+
opt_type = getattr(torch.optim, config.optimizer_type)
|
124 |
+
learner = Learner(data, model, silent=True, model_dir='.',
|
125 |
+
true_wd=config.optimizer_true_wd,
|
126 |
+
wd=config.optimizer_wd,
|
127 |
+
bn_wd=config.optimizer_bn_wd,
|
128 |
+
path=config.global_workdir,
|
129 |
+
metrics=metrics,
|
130 |
+
opt_func=partial(opt_type, **config.optimizer_args or dict()),
|
131 |
+
loss_func=MultiLosses(one_hot=config.dataset_one_hot_y))
|
132 |
+
learner.split(lambda m: children(m))
|
133 |
+
|
134 |
+
if config.global_phase == 'train':
|
135 |
+
num_replicas = 1 if local_rank is None else torch.distributed.get_world_size()
|
136 |
+
phases = _get_training_phases(config, len(learner.data.train_dl)//num_replicas)
|
137 |
+
learner.callback_fns += [
|
138 |
+
partial(GeneralScheduler, phases=phases),
|
139 |
+
partial(GradientClipping, clip=config.optimizer_clip_grad),
|
140 |
+
partial(IterationCallback, name=config.global_name,
|
141 |
+
show_iters=config.training_show_iters,
|
142 |
+
eval_iters=config.training_eval_iters,
|
143 |
+
save_iters=config.training_save_iters,
|
144 |
+
start_iters=config.training_start_iters,
|
145 |
+
stats_iters=config.training_stats_iters)]
|
146 |
+
else:
|
147 |
+
learner.callbacks += [
|
148 |
+
DumpPrediction(learn=learner,
|
149 |
+
dataset='-'.join([Path(p).name for p in config.dataset_test_roots]),charset_path=config.dataset_charset_path,
|
150 |
+
model_eval=config.model_eval,
|
151 |
+
debug=config.global_debug,
|
152 |
+
image_only=config.global_image_only)]
|
153 |
+
|
154 |
+
learner.rank = local_rank
|
155 |
+
if local_rank is not None:
|
156 |
+
logging.info(f'Set model to distributed with rank {local_rank}.')
|
157 |
+
learner.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(learner.model)
|
158 |
+
learner.model.to(local_rank)
|
159 |
+
learner = learner.to_distributed(local_rank)
|
160 |
+
|
161 |
+
if torch.cuda.device_count() > 1 and local_rank is None:
|
162 |
+
logging.info(f'Use {torch.cuda.device_count()} GPUs.')
|
163 |
+
learner.model = MyDataParallel(learner.model)
|
164 |
+
|
165 |
+
if config.model_checkpoint:
|
166 |
+
if Path(config.model_checkpoint).exists():
|
167 |
+
with open(config.model_checkpoint, 'rb') as f:
|
168 |
+
buffer = io.BytesIO(f.read())
|
169 |
+
learner.load(buffer, strict=strict)
|
170 |
+
else:
|
171 |
+
from distutils.dir_util import copy_tree
|
172 |
+
src = Path('/data/fangsc/model')/config.global_name
|
173 |
+
trg = Path('/output')/config.global_name
|
174 |
+
if src.exists(): copy_tree(str(src), str(trg))
|
175 |
+
learner.load(config.model_checkpoint, strict=strict)
|
176 |
+
logging.info(f'Read model from {config.model_checkpoint}')
|
177 |
+
elif config.global_phase == 'test':
|
178 |
+
learner.load(f'best-{config.global_name}', strict=strict)
|
179 |
+
logging.info(f'Read model from best-{config.global_name}')
|
180 |
+
|
181 |
+
if learner.opt_func.func.__name__ == 'Adadelta': # fastai bug, fix after 1.0.60
|
182 |
+
learner.fit(epochs=0, lr=config.optimizer_lr)
|
183 |
+
learner.opt.mom = 0.
|
184 |
+
|
185 |
+
return learner
|
186 |
+
|
187 |
+
def main():
|
188 |
+
parser = argparse.ArgumentParser()
|
189 |
+
parser.add_argument('--config', type=str, required=True,
|
190 |
+
help='path to config file')
|
191 |
+
parser.add_argument('--phase', type=str, default=None, choices=['train', 'test'])
|
192 |
+
parser.add_argument('--name', type=str, default=None)
|
193 |
+
parser.add_argument('--checkpoint', type=str, default=None)
|
194 |
+
parser.add_argument('--test_root', type=str, default=None)
|
195 |
+
parser.add_argument("--local_rank", type=int, default=None)
|
196 |
+
parser.add_argument('--debug', action='store_true', default=None)
|
197 |
+
parser.add_argument('--image_only', action='store_true', default=None)
|
198 |
+
parser.add_argument('--model_strict', action='store_false', default=None)
|
199 |
+
parser.add_argument('--model_eval', type=str, default=None,
|
200 |
+
choices=['alignment', 'vision', 'language'])
|
201 |
+
args = parser.parse_args()
|
202 |
+
config = Config(args.config)
|
203 |
+
if args.name is not None: config.global_name = args.name
|
204 |
+
if args.phase is not None: config.global_phase = args.phase
|
205 |
+
if args.test_root is not None: config.dataset_test_roots = [args.test_root]
|
206 |
+
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
|
207 |
+
if args.debug is not None: config.global_debug = args.debug
|
208 |
+
if args.image_only is not None: config.global_image_only = args.image_only
|
209 |
+
if args.model_eval is not None: config.model_eval = args.model_eval
|
210 |
+
if args.model_strict is not None: config.model_strict = args.model_strict
|
211 |
+
|
212 |
+
Logger.init(config.global_workdir, config.global_name, config.global_phase)
|
213 |
+
Logger.enable_file()
|
214 |
+
_set_random_seed(config.global_seed)
|
215 |
+
logging.info(config)
|
216 |
+
|
217 |
+
if args.local_rank is not None:
|
218 |
+
logging.info(f'Init distribution training at device {args.local_rank}.')
|
219 |
+
torch.cuda.set_device(args.local_rank)
|
220 |
+
torch.distributed.init_process_group(backend='nccl', init_method='env://')
|
221 |
+
|
222 |
+
logging.info('Construct dataset.')
|
223 |
+
if config.global_stage == 'pretrain-language': data = _get_language_databaunch(config)
|
224 |
+
else: data = _get_databaunch(config)
|
225 |
+
|
226 |
+
logging.info('Construct model.')
|
227 |
+
model = _get_model(config)
|
228 |
+
|
229 |
+
logging.info('Construct learner.')
|
230 |
+
learner = _get_learner(config, data, model, args.local_rank)
|
231 |
+
|
232 |
+
if config.global_phase == 'train':
|
233 |
+
logging.info('Start training.')
|
234 |
+
learner.fit(epochs=config.training_epochs,
|
235 |
+
lr=config.optimizer_lr)
|
236 |
+
else:
|
237 |
+
logging.info('Start validate')
|
238 |
+
last_metrics = learner.validate()
|
239 |
+
log_str = f'eval loss = {last_metrics[0]:6.3f}, ' \
|
240 |
+
f'ccr = {last_metrics[1]:6.3f}, cwr = {last_metrics[2]:6.3f}, ' \
|
241 |
+
f'ted = {last_metrics[3]:6.3f}, ned = {last_metrics[4]:6.0f}, ' \
|
242 |
+
f'ted/w = {last_metrics[5]:6.3f}, '
|
243 |
+
logging.info(log_str)
|
244 |
+
|
245 |
+
if __name__ == '__main__':
|
246 |
+
main()
|
modules/__init__.py
ADDED
File without changes
|
modules/attention.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .transformer import PositionalEncoding
|
4 |
+
|
5 |
+
class Attention(nn.Module):
|
6 |
+
def __init__(self, in_channels=512, max_length=25, n_feature=256):
|
7 |
+
super().__init__()
|
8 |
+
self.max_length = max_length
|
9 |
+
|
10 |
+
self.f0_embedding = nn.Embedding(max_length, in_channels)
|
11 |
+
self.w0 = nn.Linear(max_length, n_feature)
|
12 |
+
self.wv = nn.Linear(in_channels, in_channels)
|
13 |
+
self.we = nn.Linear(in_channels, max_length)
|
14 |
+
|
15 |
+
self.active = nn.Tanh()
|
16 |
+
self.softmax = nn.Softmax(dim=2)
|
17 |
+
|
18 |
+
def forward(self, enc_output):
|
19 |
+
enc_output = enc_output.permute(0, 2, 3, 1).flatten(1, 2)
|
20 |
+
reading_order = torch.arange(self.max_length, dtype=torch.long, device=enc_output.device)
|
21 |
+
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) # (S,) -> (B, S)
|
22 |
+
reading_order_embed = self.f0_embedding(reading_order) # b,25,512
|
23 |
+
|
24 |
+
t = self.w0(reading_order_embed.permute(0, 2, 1)) # b,512,256
|
25 |
+
t = self.active(t.permute(0, 2, 1) + self.wv(enc_output)) # b,256,512
|
26 |
+
|
27 |
+
attn = self.we(t) # b,256,25
|
28 |
+
attn = self.softmax(attn.permute(0, 2, 1)) # b,25,256
|
29 |
+
g_output = torch.bmm(attn, enc_output) # b,25,512
|
30 |
+
return g_output, attn.view(*attn.shape[:2], 8, 32)
|
31 |
+
|
32 |
+
|
33 |
+
def encoder_layer(in_c, out_c, k=3, s=2, p=1):
|
34 |
+
return nn.Sequential(nn.Conv2d(in_c, out_c, k, s, p),
|
35 |
+
nn.BatchNorm2d(out_c),
|
36 |
+
nn.ReLU(True))
|
37 |
+
|
38 |
+
def decoder_layer(in_c, out_c, k=3, s=1, p=1, mode='nearest', scale_factor=None, size=None):
|
39 |
+
align_corners = None if mode=='nearest' else True
|
40 |
+
return nn.Sequential(nn.Upsample(size=size, scale_factor=scale_factor,
|
41 |
+
mode=mode, align_corners=align_corners),
|
42 |
+
nn.Conv2d(in_c, out_c, k, s, p),
|
43 |
+
nn.BatchNorm2d(out_c),
|
44 |
+
nn.ReLU(True))
|
45 |
+
|
46 |
+
|
47 |
+
class PositionAttention(nn.Module):
|
48 |
+
def __init__(self, max_length, in_channels=512, num_channels=64,
|
49 |
+
h=8, w=32, mode='nearest', **kwargs):
|
50 |
+
super().__init__()
|
51 |
+
self.max_length = max_length
|
52 |
+
self.k_encoder = nn.Sequential(
|
53 |
+
encoder_layer(in_channels, num_channels, s=(1, 2)),
|
54 |
+
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
55 |
+
encoder_layer(num_channels, num_channels, s=(2, 2)),
|
56 |
+
encoder_layer(num_channels, num_channels, s=(2, 2))
|
57 |
+
)
|
58 |
+
self.k_decoder = nn.Sequential(
|
59 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
60 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
61 |
+
decoder_layer(num_channels, num_channels, scale_factor=2, mode=mode),
|
62 |
+
decoder_layer(num_channels, in_channels, size=(h, w), mode=mode)
|
63 |
+
)
|
64 |
+
|
65 |
+
self.pos_encoder = PositionalEncoding(in_channels, dropout=0, max_len=max_length)
|
66 |
+
self.project = nn.Linear(in_channels, in_channels)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
N, E, H, W = x.size()
|
70 |
+
k, v = x, x # (N, E, H, W)
|
71 |
+
|
72 |
+
# calculate key vector
|
73 |
+
features = []
|
74 |
+
for i in range(0, len(self.k_encoder)):
|
75 |
+
k = self.k_encoder[i](k)
|
76 |
+
features.append(k)
|
77 |
+
for i in range(0, len(self.k_decoder) - 1):
|
78 |
+
k = self.k_decoder[i](k)
|
79 |
+
k = k + features[len(self.k_decoder) - 2 - i]
|
80 |
+
k = self.k_decoder[-1](k)
|
81 |
+
|
82 |
+
# calculate query vector
|
83 |
+
# TODO q=f(q,k)
|
84 |
+
zeros = x.new_zeros((self.max_length, N, E)) # (T, N, E)
|
85 |
+
q = self.pos_encoder(zeros) # (T, N, E)
|
86 |
+
q = q.permute(1, 0, 2) # (N, T, E)
|
87 |
+
q = self.project(q) # (N, T, E)
|
88 |
+
|
89 |
+
# calculate attention
|
90 |
+
attn_scores = torch.bmm(q, k.flatten(2, 3)) # (N, T, (H*W))
|
91 |
+
attn_scores = attn_scores / (E ** 0.5)
|
92 |
+
attn_scores = torch.softmax(attn_scores, dim=-1)
|
93 |
+
|
94 |
+
v = v.permute(0, 2, 3, 1).view(N, -1, E) # (N, (H*W), E)
|
95 |
+
attn_vecs = torch.bmm(attn_scores, v) # (N, T, E)
|
96 |
+
|
97 |
+
return attn_vecs, attn_scores.view(N, -1, H, W)
|
modules/backbone.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import _default_tfmer_cfg
|
6 |
+
from modules.resnet import resnet45
|
7 |
+
from modules.transformer import (PositionalEncoding,
|
8 |
+
TransformerEncoder,
|
9 |
+
TransformerEncoderLayer)
|
10 |
+
|
11 |
+
|
12 |
+
class ResTranformer(nn.Module):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__()
|
15 |
+
self.resnet = resnet45()
|
16 |
+
|
17 |
+
self.d_model = ifnone(config.model_vision_d_model, _default_tfmer_cfg['d_model'])
|
18 |
+
nhead = ifnone(config.model_vision_nhead, _default_tfmer_cfg['nhead'])
|
19 |
+
d_inner = ifnone(config.model_vision_d_inner, _default_tfmer_cfg['d_inner'])
|
20 |
+
dropout = ifnone(config.model_vision_dropout, _default_tfmer_cfg['dropout'])
|
21 |
+
activation = ifnone(config.model_vision_activation, _default_tfmer_cfg['activation'])
|
22 |
+
num_layers = ifnone(config.model_vision_backbone_ln, 2)
|
23 |
+
|
24 |
+
self.pos_encoder = PositionalEncoding(self.d_model, max_len=8*32)
|
25 |
+
encoder_layer = TransformerEncoderLayer(d_model=self.d_model, nhead=nhead,
|
26 |
+
dim_feedforward=d_inner, dropout=dropout, activation=activation)
|
27 |
+
self.transformer = TransformerEncoder(encoder_layer, num_layers)
|
28 |
+
|
29 |
+
def forward(self, images):
|
30 |
+
feature = self.resnet(images)
|
31 |
+
n, c, h, w = feature.shape
|
32 |
+
feature = feature.view(n, c, -1).permute(2, 0, 1)
|
33 |
+
feature = self.pos_encoder(feature)
|
34 |
+
feature = self.transformer(feature)
|
35 |
+
feature = feature.permute(1, 2, 0).view(n, c, h, w)
|
36 |
+
return feature
|
modules/model.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from utils import CharsetMapper
|
5 |
+
|
6 |
+
|
7 |
+
_default_tfmer_cfg = dict(d_model=512, nhead=8, d_inner=2048, # 1024
|
8 |
+
dropout=0.1, activation='relu')
|
9 |
+
|
10 |
+
class Model(nn.Module):
|
11 |
+
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__()
|
14 |
+
self.max_length = config.dataset_max_length + 1
|
15 |
+
self.charset = CharsetMapper(config.dataset_charset_path, max_length=self.max_length)
|
16 |
+
|
17 |
+
def load(self, source, device=None, strict=True):
|
18 |
+
state = torch.load(source, map_location=device)
|
19 |
+
self.load_state_dict(state['model'], strict=strict)
|
20 |
+
|
21 |
+
def _get_length(self, logit, dim=-1):
|
22 |
+
""" Greed decoder to obtain length from logit"""
|
23 |
+
out = (logit.argmax(dim=-1) == self.charset.null_label)
|
24 |
+
abn = out.any(dim)
|
25 |
+
out = ((out.cumsum(dim) == 1) & out).max(dim)[1]
|
26 |
+
out = out + 1 # additional end token
|
27 |
+
out = torch.where(abn, out, out.new_tensor(logit.shape[1]))
|
28 |
+
return out
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def _get_padding_mask(length, max_length):
|
32 |
+
length = length.unsqueeze(-1)
|
33 |
+
grid = torch.arange(0, max_length, device=length.device).unsqueeze(0)
|
34 |
+
return grid >= length
|
35 |
+
|
36 |
+
@staticmethod
|
37 |
+
def _get_square_subsequent_mask(sz, device, diagonal=0, fw=True):
|
38 |
+
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
39 |
+
Unmasked positions are filled with float(0.0).
|
40 |
+
"""
|
41 |
+
mask = (torch.triu(torch.ones(sz, sz, device=device), diagonal=diagonal) == 1)
|
42 |
+
if fw: mask = mask.transpose(0, 1)
|
43 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
44 |
+
return mask
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def _get_location_mask(sz, device=None):
|
48 |
+
mask = torch.eye(sz, device=device)
|
49 |
+
mask = mask.float().masked_fill(mask == 1, float('-inf'))
|
50 |
+
return mask
|
modules/model_abinet.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from .model_vision import BaseVision
|
6 |
+
from .model_language import BCNLanguage
|
7 |
+
from .model_alignment import BaseAlignment
|
8 |
+
|
9 |
+
|
10 |
+
class ABINetModel(nn.Module):
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__()
|
13 |
+
self.use_alignment = ifnone(config.model_use_alignment, True)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.vision = BaseVision(config)
|
16 |
+
self.language = BCNLanguage(config)
|
17 |
+
if self.use_alignment: self.alignment = BaseAlignment(config)
|
18 |
+
|
19 |
+
def forward(self, images, *args):
|
20 |
+
v_res = self.vision(images)
|
21 |
+
v_tokens = torch.softmax(v_res['logits'], dim=-1)
|
22 |
+
v_lengths = v_res['pt_lengths'].clamp_(2, self.max_length) # TODO:move to langauge model
|
23 |
+
|
24 |
+
l_res = self.language(v_tokens, v_lengths)
|
25 |
+
if not self.use_alignment:
|
26 |
+
return l_res, v_res
|
27 |
+
l_feature, v_feature = l_res['feature'], v_res['feature']
|
28 |
+
|
29 |
+
a_res = self.alignment(l_feature, v_feature)
|
30 |
+
return a_res, l_res, v_res
|
modules/model_abinet_iter.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from .model_vision import BaseVision
|
6 |
+
from .model_language import BCNLanguage
|
7 |
+
from .model_alignment import BaseAlignment
|
8 |
+
|
9 |
+
|
10 |
+
class ABINetIterModel(nn.Module):
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__()
|
13 |
+
self.iter_size = ifnone(config.model_iter_size, 1)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.vision = BaseVision(config)
|
16 |
+
self.language = BCNLanguage(config)
|
17 |
+
self.alignment = BaseAlignment(config)
|
18 |
+
|
19 |
+
def forward(self, images, *args):
|
20 |
+
v_res = self.vision(images)
|
21 |
+
a_res = v_res
|
22 |
+
all_l_res, all_a_res = [], []
|
23 |
+
for _ in range(self.iter_size):
|
24 |
+
tokens = torch.softmax(a_res['logits'], dim=-1)
|
25 |
+
lengths = a_res['pt_lengths']
|
26 |
+
lengths.clamp_(2, self.max_length) # TODO:move to langauge model
|
27 |
+
l_res = self.language(tokens, lengths)
|
28 |
+
all_l_res.append(l_res)
|
29 |
+
a_res = self.alignment(l_res['feature'], v_res['feature'])
|
30 |
+
all_a_res.append(a_res)
|
31 |
+
if self.training:
|
32 |
+
return all_a_res, all_l_res, v_res
|
33 |
+
else:
|
34 |
+
return a_res, all_l_res[-1], v_res
|
modules/model_alignment.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import Model, _default_tfmer_cfg
|
6 |
+
|
7 |
+
|
8 |
+
class BaseAlignment(Model):
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
d_model = ifnone(config.model_alignment_d_model, _default_tfmer_cfg['d_model'])
|
12 |
+
|
13 |
+
self.loss_weight = ifnone(config.model_alignment_loss_weight, 1.0)
|
14 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
15 |
+
self.w_att = nn.Linear(2 * d_model, d_model)
|
16 |
+
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
17 |
+
|
18 |
+
def forward(self, l_feature, v_feature):
|
19 |
+
"""
|
20 |
+
Args:
|
21 |
+
l_feature: (N, T, E) where T is length, N is batch size and d is dim of model
|
22 |
+
v_feature: (N, T, E) shape the same as l_feature
|
23 |
+
l_lengths: (N,)
|
24 |
+
v_lengths: (N,)
|
25 |
+
"""
|
26 |
+
f = torch.cat((l_feature, v_feature), dim=2)
|
27 |
+
f_att = torch.sigmoid(self.w_att(f))
|
28 |
+
output = f_att * v_feature + (1 - f_att) * l_feature
|
29 |
+
|
30 |
+
logits = self.cls(output) # (N, T, C)
|
31 |
+
pt_lengths = self._get_length(logits)
|
32 |
+
|
33 |
+
return {'logits': logits, 'pt_lengths': pt_lengths, 'loss_weight':self.loss_weight,
|
34 |
+
'name': 'alignment'}
|
modules/model_language.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.model import _default_tfmer_cfg
|
6 |
+
from modules.model import Model
|
7 |
+
from modules.transformer import (PositionalEncoding,
|
8 |
+
TransformerDecoder,
|
9 |
+
TransformerDecoderLayer)
|
10 |
+
|
11 |
+
|
12 |
+
class BCNLanguage(Model):
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
d_model = ifnone(config.model_language_d_model, _default_tfmer_cfg['d_model'])
|
16 |
+
nhead = ifnone(config.model_language_nhead, _default_tfmer_cfg['nhead'])
|
17 |
+
d_inner = ifnone(config.model_language_d_inner, _default_tfmer_cfg['d_inner'])
|
18 |
+
dropout = ifnone(config.model_language_dropout, _default_tfmer_cfg['dropout'])
|
19 |
+
activation = ifnone(config.model_language_activation, _default_tfmer_cfg['activation'])
|
20 |
+
num_layers = ifnone(config.model_language_num_layers, 4)
|
21 |
+
self.d_model = d_model
|
22 |
+
self.detach = ifnone(config.model_language_detach, True)
|
23 |
+
self.use_self_attn = ifnone(config.model_language_use_self_attn, False)
|
24 |
+
self.loss_weight = ifnone(config.model_language_loss_weight, 1.0)
|
25 |
+
self.max_length = config.dataset_max_length + 1 # additional stop token
|
26 |
+
self.debug = ifnone(config.global_debug, False)
|
27 |
+
|
28 |
+
self.proj = nn.Linear(self.charset.num_classes, d_model, False)
|
29 |
+
self.token_encoder = PositionalEncoding(d_model, max_len=self.max_length)
|
30 |
+
self.pos_encoder = PositionalEncoding(d_model, dropout=0, max_len=self.max_length)
|
31 |
+
decoder_layer = TransformerDecoderLayer(d_model, nhead, d_inner, dropout,
|
32 |
+
activation, self_attn=self.use_self_attn, debug=self.debug)
|
33 |
+
self.model = TransformerDecoder(decoder_layer, num_layers)
|
34 |
+
|
35 |
+
self.cls = nn.Linear(d_model, self.charset.num_classes)
|
36 |
+
|
37 |
+
if config.model_language_checkpoint is not None:
|
38 |
+
logging.info(f'Read language model from {config.model_language_checkpoint}.')
|
39 |
+
self.load(config.model_language_checkpoint)
|
40 |
+
|
41 |
+
def forward(self, tokens, lengths):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
tokens: (N, T, C) where T is length, N is batch size and C is classes number
|
45 |
+
lengths: (N,)
|
46 |
+
"""
|
47 |
+
if self.detach: tokens = tokens.detach()
|
48 |
+
embed = self.proj(tokens) # (N, T, E)
|
49 |
+
embed = embed.permute(1, 0, 2) # (T, N, E)
|
50 |
+
embed = self.token_encoder(embed) # (T, N, E)
|
51 |
+
padding_mask = self._get_padding_mask(lengths, self.max_length)
|
52 |
+
|
53 |
+
zeros = embed.new_zeros(*embed.shape)
|
54 |
+
qeury = self.pos_encoder(zeros)
|
55 |
+
location_mask = self._get_location_mask(self.max_length, tokens.device)
|
56 |
+
output = self.model(qeury, embed,
|
57 |
+
tgt_key_padding_mask=padding_mask,
|
58 |
+
memory_mask=location_mask,
|
59 |
+
memory_key_padding_mask=padding_mask) # (T, N, E)
|
60 |
+
output = output.permute(1, 0, 2) # (N, T, E)
|
61 |
+
|
62 |
+
logits = self.cls(output) # (N, T, C)
|
63 |
+
pt_lengths = self._get_length(logits)
|
64 |
+
|
65 |
+
res = {'feature': output, 'logits': logits, 'pt_lengths': pt_lengths,
|
66 |
+
'loss_weight':self.loss_weight, 'name': 'language'}
|
67 |
+
return res
|
modules/model_vision.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch.nn as nn
|
3 |
+
from fastai.vision import *
|
4 |
+
|
5 |
+
from modules.attention import *
|
6 |
+
from modules.backbone import ResTranformer
|
7 |
+
from modules.model import Model
|
8 |
+
from modules.resnet import resnet45
|
9 |
+
|
10 |
+
|
11 |
+
class BaseVision(Model):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
self.loss_weight = ifnone(config.model_vision_loss_weight, 1.0)
|
15 |
+
self.out_channels = ifnone(config.model_vision_d_model, 512)
|
16 |
+
|
17 |
+
if config.model_vision_backbone == 'transformer':
|
18 |
+
self.backbone = ResTranformer(config)
|
19 |
+
else: self.backbone = resnet45()
|
20 |
+
|
21 |
+
if config.model_vision_attention == 'position':
|
22 |
+
mode = ifnone(config.model_vision_attention_mode, 'nearest')
|
23 |
+
self.attention = PositionAttention(
|
24 |
+
max_length=config.dataset_max_length + 1, # additional stop token
|
25 |
+
mode=mode,
|
26 |
+
)
|
27 |
+
elif config.model_vision_attention == 'attention':
|
28 |
+
self.attention = Attention(
|
29 |
+
max_length=config.dataset_max_length + 1, # additional stop token
|
30 |
+
n_feature=8*32,
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
raise Exception(f'{config.model_vision_attention} is not valid.')
|
34 |
+
self.cls = nn.Linear(self.out_channels, self.charset.num_classes)
|
35 |
+
|
36 |
+
if config.model_vision_checkpoint is not None:
|
37 |
+
logging.info(f'Read vision model from {config.model_vision_checkpoint}.')
|
38 |
+
self.load(config.model_vision_checkpoint)
|
39 |
+
|
40 |
+
def forward(self, images, *args):
|
41 |
+
features = self.backbone(images) # (N, E, H, W)
|
42 |
+
attn_vecs, attn_scores = self.attention(features) # (N, T, E), (N, T, H, W)
|
43 |
+
logits = self.cls(attn_vecs) # (N, T, C)
|
44 |
+
pt_lengths = self._get_length(logits)
|
45 |
+
|
46 |
+
return {'feature': attn_vecs, 'logits': logits, 'pt_lengths': pt_lengths,
|
47 |
+
'attn_scores': attn_scores, 'loss_weight':self.loss_weight, 'name': 'vision'}
|
modules/resnet.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
|
7 |
+
|
8 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
9 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
10 |
+
|
11 |
+
|
12 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
13 |
+
"3x3 convolution with padding"
|
14 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
15 |
+
padding=1, bias=False)
|
16 |
+
|
17 |
+
|
18 |
+
class BasicBlock(nn.Module):
|
19 |
+
expansion = 1
|
20 |
+
|
21 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv1x1(inplanes, planes)
|
24 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
25 |
+
self.relu = nn.ReLU(inplace=True)
|
26 |
+
self.conv2 = conv3x3(planes, planes, stride)
|
27 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
28 |
+
self.downsample = downsample
|
29 |
+
self.stride = stride
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
residual = x
|
33 |
+
|
34 |
+
out = self.conv1(x)
|
35 |
+
out = self.bn1(out)
|
36 |
+
out = self.relu(out)
|
37 |
+
|
38 |
+
out = self.conv2(out)
|
39 |
+
out = self.bn2(out)
|
40 |
+
|
41 |
+
if self.downsample is not None:
|
42 |
+
residual = self.downsample(x)
|
43 |
+
|
44 |
+
out += residual
|
45 |
+
out = self.relu(out)
|
46 |
+
|
47 |
+
return out
|
48 |
+
|
49 |
+
|
50 |
+
class ResNet(nn.Module):
|
51 |
+
|
52 |
+
def __init__(self, block, layers):
|
53 |
+
self.inplanes = 32
|
54 |
+
super(ResNet, self).__init__()
|
55 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1,
|
56 |
+
bias=False)
|
57 |
+
self.bn1 = nn.BatchNorm2d(32)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
|
60 |
+
self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
|
61 |
+
self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
|
62 |
+
self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
|
63 |
+
self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
|
64 |
+
self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
|
65 |
+
|
66 |
+
for m in self.modules():
|
67 |
+
if isinstance(m, nn.Conv2d):
|
68 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
69 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
70 |
+
elif isinstance(m, nn.BatchNorm2d):
|
71 |
+
m.weight.data.fill_(1)
|
72 |
+
m.bias.data.zero_()
|
73 |
+
|
74 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
75 |
+
downsample = None
|
76 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
77 |
+
downsample = nn.Sequential(
|
78 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
79 |
+
kernel_size=1, stride=stride, bias=False),
|
80 |
+
nn.BatchNorm2d(planes * block.expansion),
|
81 |
+
)
|
82 |
+
|
83 |
+
layers = []
|
84 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
85 |
+
self.inplanes = planes * block.expansion
|
86 |
+
for i in range(1, blocks):
|
87 |
+
layers.append(block(self.inplanes, planes))
|
88 |
+
|
89 |
+
return nn.Sequential(*layers)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
x = self.conv1(x)
|
93 |
+
x = self.bn1(x)
|
94 |
+
x = self.relu(x)
|
95 |
+
x = self.layer1(x)
|
96 |
+
x = self.layer2(x)
|
97 |
+
x = self.layer3(x)
|
98 |
+
x = self.layer4(x)
|
99 |
+
x = self.layer5(x)
|
100 |
+
return x
|
101 |
+
|
102 |
+
|
103 |
+
def resnet45():
|
104 |
+
return ResNet(BasicBlock, [3, 4, 6, 6, 3])
|
modules/transformer.py
ADDED
@@ -0,0 +1,901 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch 1.5.0
|
2 |
+
import copy
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch import Tensor
|
10 |
+
from torch.nn import Dropout, LayerNorm, Linear, Module, ModuleList, Parameter
|
11 |
+
from torch.nn import functional as F
|
12 |
+
from torch.nn.init import constant_, xavier_uniform_
|
13 |
+
|
14 |
+
|
15 |
+
def multi_head_attention_forward(query, # type: Tensor
|
16 |
+
key, # type: Tensor
|
17 |
+
value, # type: Tensor
|
18 |
+
embed_dim_to_check, # type: int
|
19 |
+
num_heads, # type: int
|
20 |
+
in_proj_weight, # type: Tensor
|
21 |
+
in_proj_bias, # type: Tensor
|
22 |
+
bias_k, # type: Optional[Tensor]
|
23 |
+
bias_v, # type: Optional[Tensor]
|
24 |
+
add_zero_attn, # type: bool
|
25 |
+
dropout_p, # type: float
|
26 |
+
out_proj_weight, # type: Tensor
|
27 |
+
out_proj_bias, # type: Tensor
|
28 |
+
training=True, # type: bool
|
29 |
+
key_padding_mask=None, # type: Optional[Tensor]
|
30 |
+
need_weights=True, # type: bool
|
31 |
+
attn_mask=None, # type: Optional[Tensor]
|
32 |
+
use_separate_proj_weight=False, # type: bool
|
33 |
+
q_proj_weight=None, # type: Optional[Tensor]
|
34 |
+
k_proj_weight=None, # type: Optional[Tensor]
|
35 |
+
v_proj_weight=None, # type: Optional[Tensor]
|
36 |
+
static_k=None, # type: Optional[Tensor]
|
37 |
+
static_v=None # type: Optional[Tensor]
|
38 |
+
):
|
39 |
+
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
|
40 |
+
r"""
|
41 |
+
Args:
|
42 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
43 |
+
See "Attention Is All You Need" for more details.
|
44 |
+
embed_dim_to_check: total dimension of the model.
|
45 |
+
num_heads: parallel attention heads.
|
46 |
+
in_proj_weight, in_proj_bias: input projection weight and bias.
|
47 |
+
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
48 |
+
add_zero_attn: add a new batch of zeros to the key and
|
49 |
+
value sequences at dim=1.
|
50 |
+
dropout_p: probability of an element to be zeroed.
|
51 |
+
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
52 |
+
training: apply dropout if is ``True``.
|
53 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
54 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
55 |
+
the corresponding value on the attention layer will be filled with -inf.
|
56 |
+
need_weights: output attn_output_weights.
|
57 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
58 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
59 |
+
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
60 |
+
and value in different forms. If false, in_proj_weight will be used, which is
|
61 |
+
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
62 |
+
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
63 |
+
static_k, static_v: static key and value used for attention operators.
|
64 |
+
Shape:
|
65 |
+
Inputs:
|
66 |
+
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
67 |
+
the embedding dimension.
|
68 |
+
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
69 |
+
the embedding dimension.
|
70 |
+
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
71 |
+
the embedding dimension.
|
72 |
+
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
73 |
+
If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
|
74 |
+
will be unchanged. If a BoolTensor is provided, the positions with the
|
75 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
76 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
77 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
78 |
+
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
79 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
80 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
81 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
82 |
+
is provided, it will be added to the attention weight.
|
83 |
+
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
84 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
85 |
+
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
86 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
87 |
+
Outputs:
|
88 |
+
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
89 |
+
E is the embedding dimension.
|
90 |
+
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
91 |
+
L is the target sequence length, S is the source sequence length.
|
92 |
+
"""
|
93 |
+
# if not torch.jit.is_scripting():
|
94 |
+
# tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
|
95 |
+
# out_proj_weight, out_proj_bias)
|
96 |
+
# if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
|
97 |
+
# return handle_torch_function(
|
98 |
+
# multi_head_attention_forward, tens_ops, query, key, value,
|
99 |
+
# embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
|
100 |
+
# bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
|
101 |
+
# out_proj_bias, training=training, key_padding_mask=key_padding_mask,
|
102 |
+
# need_weights=need_weights, attn_mask=attn_mask,
|
103 |
+
# use_separate_proj_weight=use_separate_proj_weight,
|
104 |
+
# q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
|
105 |
+
# v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
|
106 |
+
tgt_len, bsz, embed_dim = query.size()
|
107 |
+
assert embed_dim == embed_dim_to_check
|
108 |
+
assert key.size() == value.size()
|
109 |
+
|
110 |
+
head_dim = embed_dim // num_heads
|
111 |
+
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
|
112 |
+
scaling = float(head_dim) ** -0.5
|
113 |
+
|
114 |
+
if not use_separate_proj_weight:
|
115 |
+
if torch.equal(query, key) and torch.equal(key, value):
|
116 |
+
# self-attention
|
117 |
+
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
|
118 |
+
|
119 |
+
elif torch.equal(key, value):
|
120 |
+
# encoder-decoder attention
|
121 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
122 |
+
_b = in_proj_bias
|
123 |
+
_start = 0
|
124 |
+
_end = embed_dim
|
125 |
+
_w = in_proj_weight[_start:_end, :]
|
126 |
+
if _b is not None:
|
127 |
+
_b = _b[_start:_end]
|
128 |
+
q = F.linear(query, _w, _b)
|
129 |
+
|
130 |
+
if key is None:
|
131 |
+
assert value is None
|
132 |
+
k = None
|
133 |
+
v = None
|
134 |
+
else:
|
135 |
+
|
136 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
137 |
+
_b = in_proj_bias
|
138 |
+
_start = embed_dim
|
139 |
+
_end = None
|
140 |
+
_w = in_proj_weight[_start:, :]
|
141 |
+
if _b is not None:
|
142 |
+
_b = _b[_start:]
|
143 |
+
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
|
144 |
+
|
145 |
+
else:
|
146 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
147 |
+
_b = in_proj_bias
|
148 |
+
_start = 0
|
149 |
+
_end = embed_dim
|
150 |
+
_w = in_proj_weight[_start:_end, :]
|
151 |
+
if _b is not None:
|
152 |
+
_b = _b[_start:_end]
|
153 |
+
q = F.linear(query, _w, _b)
|
154 |
+
|
155 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
156 |
+
_b = in_proj_bias
|
157 |
+
_start = embed_dim
|
158 |
+
_end = embed_dim * 2
|
159 |
+
_w = in_proj_weight[_start:_end, :]
|
160 |
+
if _b is not None:
|
161 |
+
_b = _b[_start:_end]
|
162 |
+
k = F.linear(key, _w, _b)
|
163 |
+
|
164 |
+
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
165 |
+
_b = in_proj_bias
|
166 |
+
_start = embed_dim * 2
|
167 |
+
_end = None
|
168 |
+
_w = in_proj_weight[_start:, :]
|
169 |
+
if _b is not None:
|
170 |
+
_b = _b[_start:]
|
171 |
+
v = F.linear(value, _w, _b)
|
172 |
+
else:
|
173 |
+
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
|
174 |
+
len1, len2 = q_proj_weight_non_opt.size()
|
175 |
+
assert len1 == embed_dim and len2 == query.size(-1)
|
176 |
+
|
177 |
+
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
|
178 |
+
len1, len2 = k_proj_weight_non_opt.size()
|
179 |
+
assert len1 == embed_dim and len2 == key.size(-1)
|
180 |
+
|
181 |
+
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
|
182 |
+
len1, len2 = v_proj_weight_non_opt.size()
|
183 |
+
assert len1 == embed_dim and len2 == value.size(-1)
|
184 |
+
|
185 |
+
if in_proj_bias is not None:
|
186 |
+
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
|
187 |
+
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
|
188 |
+
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
|
189 |
+
else:
|
190 |
+
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
|
191 |
+
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
|
192 |
+
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
|
193 |
+
q = q * scaling
|
194 |
+
|
195 |
+
if attn_mask is not None:
|
196 |
+
assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
|
197 |
+
attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
|
198 |
+
'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
|
199 |
+
if attn_mask.dtype == torch.uint8:
|
200 |
+
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
201 |
+
attn_mask = attn_mask.to(torch.bool)
|
202 |
+
|
203 |
+
if attn_mask.dim() == 2:
|
204 |
+
attn_mask = attn_mask.unsqueeze(0)
|
205 |
+
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
206 |
+
raise RuntimeError('The size of the 2D attn_mask is not correct.')
|
207 |
+
elif attn_mask.dim() == 3:
|
208 |
+
if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
|
209 |
+
raise RuntimeError('The size of the 3D attn_mask is not correct.')
|
210 |
+
else:
|
211 |
+
raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
|
212 |
+
# attn_mask's dim is 3 now.
|
213 |
+
|
214 |
+
# # convert ByteTensor key_padding_mask to bool
|
215 |
+
# if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
216 |
+
# warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
|
217 |
+
# key_padding_mask = key_padding_mask.to(torch.bool)
|
218 |
+
|
219 |
+
if bias_k is not None and bias_v is not None:
|
220 |
+
if static_k is None and static_v is None:
|
221 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
222 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
223 |
+
if attn_mask is not None:
|
224 |
+
attn_mask = pad(attn_mask, (0, 1))
|
225 |
+
if key_padding_mask is not None:
|
226 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
227 |
+
else:
|
228 |
+
assert static_k is None, "bias cannot be added to static key."
|
229 |
+
assert static_v is None, "bias cannot be added to static value."
|
230 |
+
else:
|
231 |
+
assert bias_k is None
|
232 |
+
assert bias_v is None
|
233 |
+
|
234 |
+
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
235 |
+
if k is not None:
|
236 |
+
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
237 |
+
if v is not None:
|
238 |
+
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
239 |
+
|
240 |
+
if static_k is not None:
|
241 |
+
assert static_k.size(0) == bsz * num_heads
|
242 |
+
assert static_k.size(2) == head_dim
|
243 |
+
k = static_k
|
244 |
+
|
245 |
+
if static_v is not None:
|
246 |
+
assert static_v.size(0) == bsz * num_heads
|
247 |
+
assert static_v.size(2) == head_dim
|
248 |
+
v = static_v
|
249 |
+
|
250 |
+
src_len = k.size(1)
|
251 |
+
|
252 |
+
if key_padding_mask is not None:
|
253 |
+
assert key_padding_mask.size(0) == bsz
|
254 |
+
assert key_padding_mask.size(1) == src_len
|
255 |
+
|
256 |
+
if add_zero_attn:
|
257 |
+
src_len += 1
|
258 |
+
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
|
259 |
+
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
|
260 |
+
if attn_mask is not None:
|
261 |
+
attn_mask = pad(attn_mask, (0, 1))
|
262 |
+
if key_padding_mask is not None:
|
263 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
264 |
+
|
265 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
266 |
+
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
|
267 |
+
|
268 |
+
if attn_mask is not None:
|
269 |
+
if attn_mask.dtype == torch.bool:
|
270 |
+
attn_output_weights.masked_fill_(attn_mask, float('-inf'))
|
271 |
+
else:
|
272 |
+
attn_output_weights += attn_mask
|
273 |
+
|
274 |
+
|
275 |
+
if key_padding_mask is not None:
|
276 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
277 |
+
attn_output_weights = attn_output_weights.masked_fill(
|
278 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
279 |
+
float('-inf'),
|
280 |
+
)
|
281 |
+
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
|
282 |
+
|
283 |
+
attn_output_weights = F.softmax(
|
284 |
+
attn_output_weights, dim=-1)
|
285 |
+
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
|
286 |
+
|
287 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
288 |
+
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
289 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
290 |
+
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
|
291 |
+
|
292 |
+
if need_weights:
|
293 |
+
# average attention weights over heads
|
294 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
295 |
+
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
296 |
+
else:
|
297 |
+
return attn_output, None
|
298 |
+
|
299 |
+
class MultiheadAttention(Module):
|
300 |
+
r"""Allows the model to jointly attend to information
|
301 |
+
from different representation subspaces.
|
302 |
+
See reference: Attention Is All You Need
|
303 |
+
.. math::
|
304 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
305 |
+
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
306 |
+
Args:
|
307 |
+
embed_dim: total dimension of the model.
|
308 |
+
num_heads: parallel attention heads.
|
309 |
+
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
310 |
+
bias: add bias as module parameter. Default: True.
|
311 |
+
add_bias_kv: add bias to the key and value sequences at dim=0.
|
312 |
+
add_zero_attn: add a new batch of zeros to the key and
|
313 |
+
value sequences at dim=1.
|
314 |
+
kdim: total number of features in key. Default: None.
|
315 |
+
vdim: total number of features in value. Default: None.
|
316 |
+
Note: if kdim and vdim are None, they will be set to embed_dim such that
|
317 |
+
query, key, and value have the same number of features.
|
318 |
+
Examples::
|
319 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
320 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
321 |
+
"""
|
322 |
+
# __annotations__ = {
|
323 |
+
# 'bias_k': torch._jit_internal.Optional[torch.Tensor],
|
324 |
+
# 'bias_v': torch._jit_internal.Optional[torch.Tensor],
|
325 |
+
# }
|
326 |
+
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight']
|
327 |
+
|
328 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
|
329 |
+
super(MultiheadAttention, self).__init__()
|
330 |
+
self.embed_dim = embed_dim
|
331 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
332 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
333 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
334 |
+
|
335 |
+
self.num_heads = num_heads
|
336 |
+
self.dropout = dropout
|
337 |
+
self.head_dim = embed_dim // num_heads
|
338 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
339 |
+
|
340 |
+
if self._qkv_same_embed_dim is False:
|
341 |
+
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
|
342 |
+
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
|
343 |
+
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
|
344 |
+
self.register_parameter('in_proj_weight', None)
|
345 |
+
else:
|
346 |
+
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
347 |
+
self.register_parameter('q_proj_weight', None)
|
348 |
+
self.register_parameter('k_proj_weight', None)
|
349 |
+
self.register_parameter('v_proj_weight', None)
|
350 |
+
|
351 |
+
if bias:
|
352 |
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
353 |
+
else:
|
354 |
+
self.register_parameter('in_proj_bias', None)
|
355 |
+
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
356 |
+
|
357 |
+
if add_bias_kv:
|
358 |
+
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
|
359 |
+
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
|
360 |
+
else:
|
361 |
+
self.bias_k = self.bias_v = None
|
362 |
+
|
363 |
+
self.add_zero_attn = add_zero_attn
|
364 |
+
|
365 |
+
self._reset_parameters()
|
366 |
+
|
367 |
+
def _reset_parameters(self):
|
368 |
+
if self._qkv_same_embed_dim:
|
369 |
+
xavier_uniform_(self.in_proj_weight)
|
370 |
+
else:
|
371 |
+
xavier_uniform_(self.q_proj_weight)
|
372 |
+
xavier_uniform_(self.k_proj_weight)
|
373 |
+
xavier_uniform_(self.v_proj_weight)
|
374 |
+
|
375 |
+
if self.in_proj_bias is not None:
|
376 |
+
constant_(self.in_proj_bias, 0.)
|
377 |
+
constant_(self.out_proj.bias, 0.)
|
378 |
+
if self.bias_k is not None:
|
379 |
+
xavier_normal_(self.bias_k)
|
380 |
+
if self.bias_v is not None:
|
381 |
+
xavier_normal_(self.bias_v)
|
382 |
+
|
383 |
+
def __setstate__(self, state):
|
384 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
385 |
+
if '_qkv_same_embed_dim' not in state:
|
386 |
+
state['_qkv_same_embed_dim'] = True
|
387 |
+
|
388 |
+
super(MultiheadAttention, self).__setstate__(state)
|
389 |
+
|
390 |
+
def forward(self, query, key, value, key_padding_mask=None,
|
391 |
+
need_weights=True, attn_mask=None):
|
392 |
+
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
|
393 |
+
r"""
|
394 |
+
Args:
|
395 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
396 |
+
See "Attention Is All You Need" for more details.
|
397 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
398 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
399 |
+
the corresponding value on the attention layer will be filled with -inf.
|
400 |
+
need_weights: output attn_output_weights.
|
401 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
402 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
403 |
+
Shape:
|
404 |
+
- Inputs:
|
405 |
+
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
406 |
+
the embedding dimension.
|
407 |
+
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
408 |
+
the embedding dimension.
|
409 |
+
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
410 |
+
the embedding dimension.
|
411 |
+
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
412 |
+
If a ByteTensor is provided, the non-zero positions will be ignored while the position
|
413 |
+
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
|
414 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
415 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
416 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
417 |
+
S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
|
418 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
419 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
420 |
+
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
421 |
+
is provided, it will be added to the attention weight.
|
422 |
+
- Outputs:
|
423 |
+
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
424 |
+
E is the embedding dimension.
|
425 |
+
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
426 |
+
L is the target sequence length, S is the source sequence length.
|
427 |
+
"""
|
428 |
+
if not self._qkv_same_embed_dim:
|
429 |
+
return multi_head_attention_forward(
|
430 |
+
query, key, value, self.embed_dim, self.num_heads,
|
431 |
+
self.in_proj_weight, self.in_proj_bias,
|
432 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
433 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
434 |
+
training=self.training,
|
435 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
436 |
+
attn_mask=attn_mask, use_separate_proj_weight=True,
|
437 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
438 |
+
v_proj_weight=self.v_proj_weight)
|
439 |
+
else:
|
440 |
+
return multi_head_attention_forward(
|
441 |
+
query, key, value, self.embed_dim, self.num_heads,
|
442 |
+
self.in_proj_weight, self.in_proj_bias,
|
443 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
444 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
445 |
+
training=self.training,
|
446 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
447 |
+
attn_mask=attn_mask)
|
448 |
+
|
449 |
+
|
450 |
+
class Transformer(Module):
|
451 |
+
r"""A transformer model. User is able to modify the attributes as needed. The architecture
|
452 |
+
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
453 |
+
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
454 |
+
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
455 |
+
Processing Systems, pages 6000-6010. Users can build the BERT(https://arxiv.org/abs/1810.04805)
|
456 |
+
model with corresponding parameters.
|
457 |
+
|
458 |
+
Args:
|
459 |
+
d_model: the number of expected features in the encoder/decoder inputs (default=512).
|
460 |
+
nhead: the number of heads in the multiheadattention models (default=8).
|
461 |
+
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
|
462 |
+
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
|
463 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
464 |
+
dropout: the dropout value (default=0.1).
|
465 |
+
activation: the activation function of encoder/decoder intermediate layer, relu or gelu (default=relu).
|
466 |
+
custom_encoder: custom encoder (default=None).
|
467 |
+
custom_decoder: custom decoder (default=None).
|
468 |
+
|
469 |
+
Examples::
|
470 |
+
>>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
|
471 |
+
>>> src = torch.rand((10, 32, 512))
|
472 |
+
>>> tgt = torch.rand((20, 32, 512))
|
473 |
+
>>> out = transformer_model(src, tgt)
|
474 |
+
|
475 |
+
Note: A full example to apply nn.Transformer module for the word language model is available in
|
476 |
+
https://github.com/pytorch/examples/tree/master/word_language_model
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
|
480 |
+
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
|
481 |
+
activation="relu", custom_encoder=None, custom_decoder=None):
|
482 |
+
super(Transformer, self).__init__()
|
483 |
+
|
484 |
+
if custom_encoder is not None:
|
485 |
+
self.encoder = custom_encoder
|
486 |
+
else:
|
487 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
488 |
+
encoder_norm = LayerNorm(d_model)
|
489 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
490 |
+
|
491 |
+
if custom_decoder is not None:
|
492 |
+
self.decoder = custom_decoder
|
493 |
+
else:
|
494 |
+
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation)
|
495 |
+
decoder_norm = LayerNorm(d_model)
|
496 |
+
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
|
497 |
+
|
498 |
+
self._reset_parameters()
|
499 |
+
|
500 |
+
self.d_model = d_model
|
501 |
+
self.nhead = nhead
|
502 |
+
|
503 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None,
|
504 |
+
memory_mask=None, src_key_padding_mask=None,
|
505 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
506 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor # noqa
|
507 |
+
r"""Take in and process masked source/target sequences.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
src: the sequence to the encoder (required).
|
511 |
+
tgt: the sequence to the decoder (required).
|
512 |
+
src_mask: the additive mask for the src sequence (optional).
|
513 |
+
tgt_mask: the additive mask for the tgt sequence (optional).
|
514 |
+
memory_mask: the additive mask for the encoder output (optional).
|
515 |
+
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
|
516 |
+
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
|
517 |
+
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
|
518 |
+
|
519 |
+
Shape:
|
520 |
+
- src: :math:`(S, N, E)`.
|
521 |
+
- tgt: :math:`(T, N, E)`.
|
522 |
+
- src_mask: :math:`(S, S)`.
|
523 |
+
- tgt_mask: :math:`(T, T)`.
|
524 |
+
- memory_mask: :math:`(T, S)`.
|
525 |
+
- src_key_padding_mask: :math:`(N, S)`.
|
526 |
+
- tgt_key_padding_mask: :math:`(N, T)`.
|
527 |
+
- memory_key_padding_mask: :math:`(N, S)`.
|
528 |
+
|
529 |
+
Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked
|
530 |
+
positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
|
531 |
+
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
|
532 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
533 |
+
is provided, it will be added to the attention weight.
|
534 |
+
[src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
|
535 |
+
the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero
|
536 |
+
positions will be unchanged. If a BoolTensor is provided, the positions with the
|
537 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
538 |
+
|
539 |
+
- output: :math:`(T, N, E)`.
|
540 |
+
|
541 |
+
Note: Due to the multi-head attention architecture in the transformer model,
|
542 |
+
the output sequence length of a transformer is same as the input sequence
|
543 |
+
(i.e. target) length of the decode.
|
544 |
+
|
545 |
+
where S is the source sequence length, T is the target sequence length, N is the
|
546 |
+
batch size, E is the feature number
|
547 |
+
|
548 |
+
Examples:
|
549 |
+
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
|
550 |
+
"""
|
551 |
+
|
552 |
+
if src.size(1) != tgt.size(1):
|
553 |
+
raise RuntimeError("the batch number of src and tgt must be equal")
|
554 |
+
|
555 |
+
if src.size(2) != self.d_model or tgt.size(2) != self.d_model:
|
556 |
+
raise RuntimeError("the feature number of src and tgt must be equal to d_model")
|
557 |
+
|
558 |
+
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
|
559 |
+
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
|
560 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
561 |
+
memory_key_padding_mask=memory_key_padding_mask)
|
562 |
+
return output
|
563 |
+
|
564 |
+
def generate_square_subsequent_mask(self, sz):
|
565 |
+
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
566 |
+
Unmasked positions are filled with float(0.0).
|
567 |
+
"""
|
568 |
+
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
|
569 |
+
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
570 |
+
return mask
|
571 |
+
|
572 |
+
def _reset_parameters(self):
|
573 |
+
r"""Initiate parameters in the transformer model."""
|
574 |
+
|
575 |
+
for p in self.parameters():
|
576 |
+
if p.dim() > 1:
|
577 |
+
xavier_uniform_(p)
|
578 |
+
|
579 |
+
|
580 |
+
class TransformerEncoder(Module):
|
581 |
+
r"""TransformerEncoder is a stack of N encoder layers
|
582 |
+
|
583 |
+
Args:
|
584 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
585 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
586 |
+
norm: the layer normalization component (optional).
|
587 |
+
|
588 |
+
Examples::
|
589 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
590 |
+
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
|
591 |
+
>>> src = torch.rand(10, 32, 512)
|
592 |
+
>>> out = transformer_encoder(src)
|
593 |
+
"""
|
594 |
+
__constants__ = ['norm']
|
595 |
+
|
596 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
597 |
+
super(TransformerEncoder, self).__init__()
|
598 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
599 |
+
self.num_layers = num_layers
|
600 |
+
self.norm = norm
|
601 |
+
|
602 |
+
def forward(self, src, mask=None, src_key_padding_mask=None):
|
603 |
+
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
604 |
+
r"""Pass the input through the encoder layers in turn.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
src: the sequence to the encoder (required).
|
608 |
+
mask: the mask for the src sequence (optional).
|
609 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
610 |
+
|
611 |
+
Shape:
|
612 |
+
see the docs in Transformer class.
|
613 |
+
"""
|
614 |
+
output = src
|
615 |
+
|
616 |
+
for i, mod in enumerate(self.layers):
|
617 |
+
output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
|
618 |
+
|
619 |
+
if self.norm is not None:
|
620 |
+
output = self.norm(output)
|
621 |
+
|
622 |
+
return output
|
623 |
+
|
624 |
+
|
625 |
+
class TransformerDecoder(Module):
|
626 |
+
r"""TransformerDecoder is a stack of N decoder layers
|
627 |
+
|
628 |
+
Args:
|
629 |
+
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
|
630 |
+
num_layers: the number of sub-decoder-layers in the decoder (required).
|
631 |
+
norm: the layer normalization component (optional).
|
632 |
+
|
633 |
+
Examples::
|
634 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
635 |
+
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
|
636 |
+
>>> memory = torch.rand(10, 32, 512)
|
637 |
+
>>> tgt = torch.rand(20, 32, 512)
|
638 |
+
>>> out = transformer_decoder(tgt, memory)
|
639 |
+
"""
|
640 |
+
__constants__ = ['norm']
|
641 |
+
|
642 |
+
def __init__(self, decoder_layer, num_layers, norm=None):
|
643 |
+
super(TransformerDecoder, self).__init__()
|
644 |
+
self.layers = _get_clones(decoder_layer, num_layers)
|
645 |
+
self.num_layers = num_layers
|
646 |
+
self.norm = norm
|
647 |
+
|
648 |
+
def forward(self, tgt, memory, memory2=None, tgt_mask=None,
|
649 |
+
memory_mask=None, memory_mask2=None, tgt_key_padding_mask=None,
|
650 |
+
memory_key_padding_mask=None, memory_key_padding_mask2=None):
|
651 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
652 |
+
r"""Pass the inputs (and mask) through the decoder layer in turn.
|
653 |
+
|
654 |
+
Args:
|
655 |
+
tgt: the sequence to the decoder (required).
|
656 |
+
memory: the sequence from the last layer of the encoder (required).
|
657 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
658 |
+
memory_mask: the mask for the memory sequence (optional).
|
659 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
660 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
661 |
+
|
662 |
+
Shape:
|
663 |
+
see the docs in Transformer class.
|
664 |
+
"""
|
665 |
+
output = tgt
|
666 |
+
|
667 |
+
for mod in self.layers:
|
668 |
+
output = mod(output, memory, memory2=memory2, tgt_mask=tgt_mask,
|
669 |
+
memory_mask=memory_mask, memory_mask2=memory_mask2,
|
670 |
+
tgt_key_padding_mask=tgt_key_padding_mask,
|
671 |
+
memory_key_padding_mask=memory_key_padding_mask,
|
672 |
+
memory_key_padding_mask2=memory_key_padding_mask2)
|
673 |
+
|
674 |
+
if self.norm is not None:
|
675 |
+
output = self.norm(output)
|
676 |
+
|
677 |
+
return output
|
678 |
+
|
679 |
+
class TransformerEncoderLayer(Module):
|
680 |
+
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
681 |
+
This standard encoder layer is based on the paper "Attention Is All You Need".
|
682 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
683 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
684 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
685 |
+
in a different way during application.
|
686 |
+
|
687 |
+
Args:
|
688 |
+
d_model: the number of expected features in the input (required).
|
689 |
+
nhead: the number of heads in the multiheadattention models (required).
|
690 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
691 |
+
dropout: the dropout value (default=0.1).
|
692 |
+
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
693 |
+
|
694 |
+
Examples::
|
695 |
+
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
|
696 |
+
>>> src = torch.rand(10, 32, 512)
|
697 |
+
>>> out = encoder_layer(src)
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
701 |
+
activation="relu", debug=False):
|
702 |
+
super(TransformerEncoderLayer, self).__init__()
|
703 |
+
self.debug = debug
|
704 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
705 |
+
# Implementation of Feedforward model
|
706 |
+
self.linear1 = Linear(d_model, dim_feedforward)
|
707 |
+
self.dropout = Dropout(dropout)
|
708 |
+
self.linear2 = Linear(dim_feedforward, d_model)
|
709 |
+
|
710 |
+
self.norm1 = LayerNorm(d_model)
|
711 |
+
self.norm2 = LayerNorm(d_model)
|
712 |
+
self.dropout1 = Dropout(dropout)
|
713 |
+
self.dropout2 = Dropout(dropout)
|
714 |
+
|
715 |
+
self.activation = _get_activation_fn(activation)
|
716 |
+
|
717 |
+
def __setstate__(self, state):
|
718 |
+
if 'activation' not in state:
|
719 |
+
state['activation'] = F.relu
|
720 |
+
super(TransformerEncoderLayer, self).__setstate__(state)
|
721 |
+
|
722 |
+
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
723 |
+
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
|
724 |
+
r"""Pass the input through the encoder layer.
|
725 |
+
|
726 |
+
Args:
|
727 |
+
src: the sequence to the encoder layer (required).
|
728 |
+
src_mask: the mask for the src sequence (optional).
|
729 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
730 |
+
|
731 |
+
Shape:
|
732 |
+
see the docs in Transformer class.
|
733 |
+
"""
|
734 |
+
src2, attn = self.self_attn(src, src, src, attn_mask=src_mask,
|
735 |
+
key_padding_mask=src_key_padding_mask)
|
736 |
+
if self.debug: self.attn = attn
|
737 |
+
src = src + self.dropout1(src2)
|
738 |
+
src = self.norm1(src)
|
739 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
740 |
+
src = src + self.dropout2(src2)
|
741 |
+
src = self.norm2(src)
|
742 |
+
|
743 |
+
return src
|
744 |
+
|
745 |
+
|
746 |
+
class TransformerDecoderLayer(Module):
|
747 |
+
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
|
748 |
+
This standard decoder layer is based on the paper "Attention Is All You Need".
|
749 |
+
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
750 |
+
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
751 |
+
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
752 |
+
in a different way during application.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
d_model: the number of expected features in the input (required).
|
756 |
+
nhead: the number of heads in the multiheadattention models (required).
|
757 |
+
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
758 |
+
dropout: the dropout value (default=0.1).
|
759 |
+
activation: the activation function of intermediate layer, relu or gelu (default=relu).
|
760 |
+
|
761 |
+
Examples::
|
762 |
+
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
|
763 |
+
>>> memory = torch.rand(10, 32, 512)
|
764 |
+
>>> tgt = torch.rand(20, 32, 512)
|
765 |
+
>>> out = decoder_layer(tgt, memory)
|
766 |
+
"""
|
767 |
+
|
768 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
769 |
+
activation="relu", self_attn=True, siamese=False, debug=False):
|
770 |
+
super(TransformerDecoderLayer, self).__init__()
|
771 |
+
self.has_self_attn, self.siamese = self_attn, siamese
|
772 |
+
self.debug = debug
|
773 |
+
if self.has_self_attn:
|
774 |
+
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
775 |
+
self.norm1 = LayerNorm(d_model)
|
776 |
+
self.dropout1 = Dropout(dropout)
|
777 |
+
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
778 |
+
# Implementation of Feedforward model
|
779 |
+
self.linear1 = Linear(d_model, dim_feedforward)
|
780 |
+
self.dropout = Dropout(dropout)
|
781 |
+
self.linear2 = Linear(dim_feedforward, d_model)
|
782 |
+
|
783 |
+
self.norm2 = LayerNorm(d_model)
|
784 |
+
self.norm3 = LayerNorm(d_model)
|
785 |
+
self.dropout2 = Dropout(dropout)
|
786 |
+
self.dropout3 = Dropout(dropout)
|
787 |
+
if self.siamese:
|
788 |
+
self.multihead_attn2 = MultiheadAttention(d_model, nhead, dropout=dropout)
|
789 |
+
|
790 |
+
self.activation = _get_activation_fn(activation)
|
791 |
+
|
792 |
+
def __setstate__(self, state):
|
793 |
+
if 'activation' not in state:
|
794 |
+
state['activation'] = F.relu
|
795 |
+
super(TransformerDecoderLayer, self).__setstate__(state)
|
796 |
+
|
797 |
+
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
798 |
+
tgt_key_padding_mask=None, memory_key_padding_mask=None,
|
799 |
+
memory2=None, memory_mask2=None, memory_key_padding_mask2=None):
|
800 |
+
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor
|
801 |
+
r"""Pass the inputs (and mask) through the decoder layer.
|
802 |
+
|
803 |
+
Args:
|
804 |
+
tgt: the sequence to the decoder layer (required).
|
805 |
+
memory: the sequence from the last layer of the encoder (required).
|
806 |
+
tgt_mask: the mask for the tgt sequence (optional).
|
807 |
+
memory_mask: the mask for the memory sequence (optional).
|
808 |
+
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
809 |
+
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
810 |
+
|
811 |
+
Shape:
|
812 |
+
see the docs in Transformer class.
|
813 |
+
"""
|
814 |
+
if self.has_self_attn:
|
815 |
+
tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
|
816 |
+
key_padding_mask=tgt_key_padding_mask)
|
817 |
+
tgt = tgt + self.dropout1(tgt2)
|
818 |
+
tgt = self.norm1(tgt)
|
819 |
+
if self.debug: self.attn = attn
|
820 |
+
tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
|
821 |
+
key_padding_mask=memory_key_padding_mask)
|
822 |
+
if self.debug: self.attn2 = attn2
|
823 |
+
|
824 |
+
if self.siamese:
|
825 |
+
tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2,
|
826 |
+
key_padding_mask=memory_key_padding_mask2)
|
827 |
+
tgt = tgt + self.dropout2(tgt3)
|
828 |
+
if self.debug: self.attn3 = attn3
|
829 |
+
|
830 |
+
tgt = tgt + self.dropout2(tgt2)
|
831 |
+
tgt = self.norm2(tgt)
|
832 |
+
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
833 |
+
tgt = tgt + self.dropout3(tgt2)
|
834 |
+
tgt = self.norm3(tgt)
|
835 |
+
|
836 |
+
return tgt
|
837 |
+
|
838 |
+
|
839 |
+
def _get_clones(module, N):
|
840 |
+
return ModuleList([copy.deepcopy(module) for i in range(N)])
|
841 |
+
|
842 |
+
|
843 |
+
def _get_activation_fn(activation):
|
844 |
+
if activation == "relu":
|
845 |
+
return F.relu
|
846 |
+
elif activation == "gelu":
|
847 |
+
return F.gelu
|
848 |
+
|
849 |
+
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
850 |
+
|
851 |
+
|
852 |
+
class PositionalEncoding(nn.Module):
|
853 |
+
r"""Inject some information about the relative or absolute position of the tokens
|
854 |
+
in the sequence. The positional encodings have the same dimension as
|
855 |
+
the embeddings, so that the two can be summed. Here, we use sine and cosine
|
856 |
+
functions of different frequencies.
|
857 |
+
.. math::
|
858 |
+
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
|
859 |
+
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
|
860 |
+
\text{where pos is the word position and i is the embed idx)
|
861 |
+
Args:
|
862 |
+
d_model: the embed dim (required).
|
863 |
+
dropout: the dropout value (default=0.1).
|
864 |
+
max_len: the max. length of the incoming sequence (default=5000).
|
865 |
+
Examples:
|
866 |
+
>>> pos_encoder = PositionalEncoding(d_model)
|
867 |
+
"""
|
868 |
+
|
869 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
870 |
+
super(PositionalEncoding, self).__init__()
|
871 |
+
self.dropout = nn.Dropout(p=dropout)
|
872 |
+
|
873 |
+
pe = torch.zeros(max_len, d_model)
|
874 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
875 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
876 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
877 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
878 |
+
pe = pe.unsqueeze(0).transpose(0, 1)
|
879 |
+
self.register_buffer('pe', pe)
|
880 |
+
|
881 |
+
def forward(self, x):
|
882 |
+
r"""Inputs of forward function
|
883 |
+
Args:
|
884 |
+
x: the sequence fed to the positional encoder model (required).
|
885 |
+
Shape:
|
886 |
+
x: [sequence length, batch size, embed dim]
|
887 |
+
output: [sequence length, batch size, embed dim]
|
888 |
+
Examples:
|
889 |
+
>>> output = pos_encoder(x)
|
890 |
+
"""
|
891 |
+
|
892 |
+
x = x + self.pe[:x.size(0), :]
|
893 |
+
return self.dropout(x)
|
894 |
+
|
895 |
+
|
896 |
+
if __name__ == '__main__':
|
897 |
+
transformer_model = Transformer(nhead=16, num_encoder_layers=12)
|
898 |
+
src = torch.rand((10, 32, 512))
|
899 |
+
tgt = torch.rand((20, 32, 512))
|
900 |
+
out = transformer_model(src, tgt)
|
901 |
+
print(out)
|
notebooks/dataset-text.ipynb
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.chdir('..')\n",
|
11 |
+
"from dataset import *\n",
|
12 |
+
"torch.set_printoptions(sci_mode=False)"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"# Construct dataset"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"data = TextDataset('data/Vocabulary_train_v2.csv', is_training=False, smooth_label=True, smooth_factor=0.1)"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"data = DataBunch.create(train_ds=data, valid_ds=None, bs=6)"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"x, y = data.one_batch(); x, y"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"x[0].shape, x[1].shape"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"y[0].shape, y[1].shape"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": null,
|
70 |
+
"metadata": {},
|
71 |
+
"outputs": [],
|
72 |
+
"source": [
|
73 |
+
"x[0].argmax(-1) - y[0].argmax(-1)"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"x[0].argmax(-1)"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"y[0].argmax(-1)"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": null,
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"x[0][0,0]"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "markdown",
|
105 |
+
"metadata": {},
|
106 |
+
"source": [
|
107 |
+
"# test SpellingMutation"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": null,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"probs = {'pn0': 0., 'pn1': 0., 'pn2': 0., 'pt0': 1.0, 'pt1': 1.0}\n",
|
117 |
+
"charset = CharsetMapper('data/charset_36.txt')\n",
|
118 |
+
"sm = SpellingMutation(charset=charset, **probs)"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"sm('*a-aa')"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": []
|
136 |
+
}
|
137 |
+
],
|
138 |
+
"metadata": {
|
139 |
+
"kernelspec": {
|
140 |
+
"display_name": "Python 3",
|
141 |
+
"language": "python",
|
142 |
+
"name": "python3"
|
143 |
+
},
|
144 |
+
"language_info": {
|
145 |
+
"codemirror_mode": {
|
146 |
+
"name": "ipython",
|
147 |
+
"version": 3
|
148 |
+
},
|
149 |
+
"file_extension": ".py",
|
150 |
+
"mimetype": "text/x-python",
|
151 |
+
"name": "python",
|
152 |
+
"nbconvert_exporter": "python",
|
153 |
+
"pygments_lexer": "ipython3",
|
154 |
+
"version": "3.7.4"
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"nbformat": 4,
|
158 |
+
"nbformat_minor": 2
|
159 |
+
}
|
notebooks/dataset.ipynb
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"os.chdir('..')\n",
|
11 |
+
"from dataset import *"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {
|
18 |
+
"scrolled": false
|
19 |
+
},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"import logging\n",
|
23 |
+
"from torchvision.transforms import ToPILImage\n",
|
24 |
+
"from torchvision.utils import make_grid\n",
|
25 |
+
"from IPython.display import display\n",
|
26 |
+
"from torch.utils.data import ConcatDataset\n",
|
27 |
+
"charset = CharsetMapper('data/charset_36.txt')"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"metadata": {},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"def show_all(dl, iter_size=None):\n",
|
37 |
+
" if iter_size is None: iter_size = len(dl)\n",
|
38 |
+
" for i, item in enumerate(dl):\n",
|
39 |
+
" if i >= iter_size:\n",
|
40 |
+
" break\n",
|
41 |
+
" image = item[0]\n",
|
42 |
+
" label = item[1][0]\n",
|
43 |
+
" length = item[1][1]\n",
|
44 |
+
" print(f'iter {i}:', [charset.get_text(label[j][0: length[j]].argmax(-1), padding=False) for j in range(bs)])\n",
|
45 |
+
" display(ToPILImage()(make_grid(item[0].cpu())))"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "markdown",
|
50 |
+
"metadata": {},
|
51 |
+
"source": [
|
52 |
+
"# Construct dataset"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"data1 = ImageDataset('data/training/ST', is_training=True);data1 # is_training"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {
|
68 |
+
"scrolled": true
|
69 |
+
},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"bs=64\n",
|
73 |
+
"data2 = ImageDataBunch.create(train_ds=data1, valid_ds=None, bs=bs, num_workers=1);data2"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": null,
|
79 |
+
"metadata": {},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"#data3 = data2.normalize(imagenet_stats);data3\n",
|
83 |
+
"data3 = data2"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"show_all(data3.train_dl, 4)"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "markdown",
|
97 |
+
"metadata": {},
|
98 |
+
"source": [
|
99 |
+
"# Add dataset"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": null,
|
105 |
+
"metadata": {},
|
106 |
+
"outputs": [],
|
107 |
+
"source": [
|
108 |
+
"kwargs = {'data_aug': False, 'is_training': False}"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": null,
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [],
|
116 |
+
"source": [
|
117 |
+
"data1 = ImageDataset('data/evaluation/IIIT5k_3000', **kwargs);data1"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"cell_type": "code",
|
122 |
+
"execution_count": null,
|
123 |
+
"metadata": {},
|
124 |
+
"outputs": [],
|
125 |
+
"source": [
|
126 |
+
"data2 = ImageDataset('data/evaluation/SVT', **kwargs);data2"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": null,
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"data3 = ConcatDataset([data1, data2])"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": null,
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [],
|
143 |
+
"source": [
|
144 |
+
"bs=64\n",
|
145 |
+
"data4 = ImageDataBunch.create(train_ds=data1, valid_ds=data3, bs=bs, num_workers=1);data4"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"metadata": {},
|
152 |
+
"outputs": [],
|
153 |
+
"source": [
|
154 |
+
"len(data4.train_dl), len(data4.valid_dl)"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [],
|
162 |
+
"source": [
|
163 |
+
"show_all(data4.train_dl, 4)"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "markdown",
|
168 |
+
"metadata": {},
|
169 |
+
"source": [
|
170 |
+
"# TEST"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"metadata": {},
|
177 |
+
"outputs": [],
|
178 |
+
"source": [
|
179 |
+
"len(data4.valid_dl)"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"cell_type": "code",
|
184 |
+
"execution_count": null,
|
185 |
+
"metadata": {},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"import time\n",
|
189 |
+
"niter = 1000\n",
|
190 |
+
"start = time.time()\n",
|
191 |
+
"for i, item in enumerate(progress_bar(data4.valid_dl)):\n",
|
192 |
+
" if i % niter == 0 and i > 0:\n",
|
193 |
+
" print(i, (time.time() - start) / niter)\n",
|
194 |
+
" start = time.time()"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"metadata": {
|
201 |
+
"scrolled": true
|
202 |
+
},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"num = 20\n",
|
206 |
+
"index = 6\n",
|
207 |
+
"plt.figure(figsize=(20, 10))\n",
|
208 |
+
"for i in range(num):\n",
|
209 |
+
" plt.subplot(num // 4, 4, i+1)\n",
|
210 |
+
" plt.imshow(data4.train_ds[i][0].data.numpy().transpose(1,2,0))"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": null,
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"def show(path, image_key):\n",
|
220 |
+
" with lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False).begin(write=False) as txn:\n",
|
221 |
+
" imgbuf = txn.get(image_key.encode()) # image\n",
|
222 |
+
" buf = six.BytesIO()\n",
|
223 |
+
" buf.write(imgbuf)\n",
|
224 |
+
" buf.seek(0)\n",
|
225 |
+
" with warnings.catch_warnings():\n",
|
226 |
+
" warnings.simplefilter(\"ignore\", UserWarning) # EXIF warning from TiffPlugin\n",
|
227 |
+
" x = PIL.Image.open(buf).convert('RGB')\n",
|
228 |
+
" print(x.size)\n",
|
229 |
+
" plt.imshow(x)"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"image_key = 'image-003118258'\n",
|
239 |
+
"image_key = 'image-002780217'\n",
|
240 |
+
"image_key = 'image-002780218'\n",
|
241 |
+
"path = 'data/CVPR2016'\n",
|
242 |
+
"show(path, image_key)"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": null,
|
248 |
+
"metadata": {},
|
249 |
+
"outputs": [],
|
250 |
+
"source": [
|
251 |
+
"image_key = 'image-004668347'\n",
|
252 |
+
"image_key = 'image-006128516'\n",
|
253 |
+
"path = 'data/NIPS2014'\n",
|
254 |
+
"show(path, image_key)"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "code",
|
259 |
+
"execution_count": null,
|
260 |
+
"metadata": {},
|
261 |
+
"outputs": [],
|
262 |
+
"source": [
|
263 |
+
"image_key = 'image-004668347'\n",
|
264 |
+
"image_key = 'image-000002420'\n",
|
265 |
+
"path = 'data/IIIT5K_3000'\n",
|
266 |
+
"show(path, image_key)"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": null,
|
272 |
+
"metadata": {},
|
273 |
+
"outputs": [],
|
274 |
+
"source": []
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"metadata": {
|
278 |
+
"kernelspec": {
|
279 |
+
"display_name": "Python 3",
|
280 |
+
"language": "python",
|
281 |
+
"name": "python3"
|
282 |
+
},
|
283 |
+
"language_info": {
|
284 |
+
"codemirror_mode": {
|
285 |
+
"name": "ipython",
|
286 |
+
"version": 3
|
287 |
+
},
|
288 |
+
"file_extension": ".py",
|
289 |
+
"mimetype": "text/x-python",
|
290 |
+
"name": "python",
|
291 |
+
"nbconvert_exporter": "python",
|
292 |
+
"pygments_lexer": "ipython3",
|
293 |
+
"version": "3.7.4"
|
294 |
+
}
|
295 |
+
},
|
296 |
+
"nbformat": 4,
|
297 |
+
"nbformat_minor": 2
|
298 |
+
}
|
notebooks/prepare_wikitext103.ipynb
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# 82841986 is_char and is_digit"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"# 82075350 regrex non-ascii and none-digit"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {},
|
20 |
+
"source": [
|
21 |
+
"## 86460763 left"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 1,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"import os\n",
|
31 |
+
"import random\n",
|
32 |
+
"import re\n",
|
33 |
+
"import pandas as pd"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 2,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"max_length = 25\n",
|
43 |
+
"min_length = 1\n",
|
44 |
+
"root = '../data'\n",
|
45 |
+
"charset = 'abcdefghijklmnopqrstuvwxyz'\n",
|
46 |
+
"digits = '0123456789'"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 3,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"def is_char(text, ratio=0.5):\n",
|
56 |
+
" text = text.lower()\n",
|
57 |
+
" length = max(len(text), 1)\n",
|
58 |
+
" char_num = sum([t in charset for t in text])\n",
|
59 |
+
" if char_num < min_length: return False\n",
|
60 |
+
" if char_num / length < ratio: return False\n",
|
61 |
+
" return True\n",
|
62 |
+
"\n",
|
63 |
+
"def is_digit(text, ratio=0.5):\n",
|
64 |
+
" length = max(len(text), 1)\n",
|
65 |
+
" digit_num = sum([t in digits for t in text])\n",
|
66 |
+
" if digit_num / length < ratio: return False\n",
|
67 |
+
" return True"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {},
|
73 |
+
"source": [
|
74 |
+
"# generate training dataset"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 4,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"with open('/tmp/wikitext-103/wiki.train.tokens', 'r') as file:\n",
|
84 |
+
" lines = file.readlines()"
|
85 |
+
]
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"cell_type": "code",
|
89 |
+
"execution_count": 5,
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"inp, gt = [], []\n",
|
94 |
+
"for line in lines:\n",
|
95 |
+
" token = line.lower().split()\n",
|
96 |
+
" for text in token:\n",
|
97 |
+
" text = re.sub('[^0-9a-zA-Z]+', '', text)\n",
|
98 |
+
" if len(text) < min_length:\n",
|
99 |
+
" # print('short-text', text)\n",
|
100 |
+
" continue\n",
|
101 |
+
" if len(text) > max_length:\n",
|
102 |
+
" # print('long-text', text)\n",
|
103 |
+
" continue\n",
|
104 |
+
" inp.append(text)\n",
|
105 |
+
" gt.append(text)"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 6,
|
111 |
+
"metadata": {},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"train_voc = os.path.join(root, 'WikiText-103.csv')\n",
|
115 |
+
"pd.DataFrame({'inp':inp, 'gt':gt}).to_csv(train_voc, index=None, sep='\\t')"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": 7,
|
121 |
+
"metadata": {},
|
122 |
+
"outputs": [
|
123 |
+
{
|
124 |
+
"data": {
|
125 |
+
"text/plain": [
|
126 |
+
"86460763"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
"execution_count": 7,
|
130 |
+
"metadata": {},
|
131 |
+
"output_type": "execute_result"
|
132 |
+
}
|
133 |
+
],
|
134 |
+
"source": [
|
135 |
+
"len(inp)"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": 8,
|
141 |
+
"metadata": {},
|
142 |
+
"outputs": [
|
143 |
+
{
|
144 |
+
"data": {
|
145 |
+
"text/plain": [
|
146 |
+
"['valkyria',\n",
|
147 |
+
" 'chronicles',\n",
|
148 |
+
" 'iii',\n",
|
149 |
+
" 'senj',\n",
|
150 |
+
" 'no',\n",
|
151 |
+
" 'valkyria',\n",
|
152 |
+
" '3',\n",
|
153 |
+
" 'unk',\n",
|
154 |
+
" 'chronicles',\n",
|
155 |
+
" 'japanese',\n",
|
156 |
+
" '3',\n",
|
157 |
+
" 'lit',\n",
|
158 |
+
" 'valkyria',\n",
|
159 |
+
" 'of',\n",
|
160 |
+
" 'the',\n",
|
161 |
+
" 'battlefield',\n",
|
162 |
+
" '3',\n",
|
163 |
+
" 'commonly',\n",
|
164 |
+
" 'referred',\n",
|
165 |
+
" 'to',\n",
|
166 |
+
" 'as',\n",
|
167 |
+
" 'valkyria',\n",
|
168 |
+
" 'chronicles',\n",
|
169 |
+
" 'iii',\n",
|
170 |
+
" 'outside',\n",
|
171 |
+
" 'japan',\n",
|
172 |
+
" 'is',\n",
|
173 |
+
" 'a',\n",
|
174 |
+
" 'tactical',\n",
|
175 |
+
" 'role',\n",
|
176 |
+
" 'playing',\n",
|
177 |
+
" 'video',\n",
|
178 |
+
" 'game',\n",
|
179 |
+
" 'developed',\n",
|
180 |
+
" 'by',\n",
|
181 |
+
" 'sega',\n",
|
182 |
+
" 'and',\n",
|
183 |
+
" 'mediavision',\n",
|
184 |
+
" 'for',\n",
|
185 |
+
" 'the',\n",
|
186 |
+
" 'playstation',\n",
|
187 |
+
" 'portable',\n",
|
188 |
+
" 'released',\n",
|
189 |
+
" 'in',\n",
|
190 |
+
" 'january',\n",
|
191 |
+
" '2011',\n",
|
192 |
+
" 'in',\n",
|
193 |
+
" 'japan',\n",
|
194 |
+
" 'it',\n",
|
195 |
+
" 'is',\n",
|
196 |
+
" 'the',\n",
|
197 |
+
" 'third',\n",
|
198 |
+
" 'game',\n",
|
199 |
+
" 'in',\n",
|
200 |
+
" 'the',\n",
|
201 |
+
" 'valkyria',\n",
|
202 |
+
" 'series',\n",
|
203 |
+
" 'employing',\n",
|
204 |
+
" 'the',\n",
|
205 |
+
" 'same',\n",
|
206 |
+
" 'fusion',\n",
|
207 |
+
" 'of',\n",
|
208 |
+
" 'tactical',\n",
|
209 |
+
" 'and',\n",
|
210 |
+
" 'real',\n",
|
211 |
+
" 'time',\n",
|
212 |
+
" 'gameplay',\n",
|
213 |
+
" 'as',\n",
|
214 |
+
" 'its',\n",
|
215 |
+
" 'predecessors',\n",
|
216 |
+
" 'the',\n",
|
217 |
+
" 'story',\n",
|
218 |
+
" 'runs',\n",
|
219 |
+
" 'parallel',\n",
|
220 |
+
" 'to',\n",
|
221 |
+
" 'the',\n",
|
222 |
+
" 'first',\n",
|
223 |
+
" 'game',\n",
|
224 |
+
" 'and',\n",
|
225 |
+
" 'follows',\n",
|
226 |
+
" 'the',\n",
|
227 |
+
" 'nameless',\n",
|
228 |
+
" 'a',\n",
|
229 |
+
" 'penal',\n",
|
230 |
+
" 'military',\n",
|
231 |
+
" 'unit',\n",
|
232 |
+
" 'serving',\n",
|
233 |
+
" 'the',\n",
|
234 |
+
" 'nation',\n",
|
235 |
+
" 'of',\n",
|
236 |
+
" 'gallia',\n",
|
237 |
+
" 'during',\n",
|
238 |
+
" 'the',\n",
|
239 |
+
" 'second',\n",
|
240 |
+
" 'europan',\n",
|
241 |
+
" 'war',\n",
|
242 |
+
" 'who',\n",
|
243 |
+
" 'perform',\n",
|
244 |
+
" 'secret',\n",
|
245 |
+
" 'black']"
|
246 |
+
]
|
247 |
+
},
|
248 |
+
"execution_count": 8,
|
249 |
+
"metadata": {},
|
250 |
+
"output_type": "execute_result"
|
251 |
+
}
|
252 |
+
],
|
253 |
+
"source": [
|
254 |
+
"inp[:100]"
|
255 |
+
]
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"cell_type": "markdown",
|
259 |
+
"metadata": {},
|
260 |
+
"source": [
|
261 |
+
"# generate evaluation dataset"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": 9,
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [],
|
269 |
+
"source": [
|
270 |
+
"def disturb(word, degree, p=0.3):\n",
|
271 |
+
" if len(word) // 2 < degree: return word\n",
|
272 |
+
" if is_digit(word): return word\n",
|
273 |
+
" if random.random() < p: return word\n",
|
274 |
+
" else:\n",
|
275 |
+
" index = list(range(len(word)))\n",
|
276 |
+
" random.shuffle(index)\n",
|
277 |
+
" index = index[:degree]\n",
|
278 |
+
" new_word = []\n",
|
279 |
+
" for i in range(len(word)):\n",
|
280 |
+
" if i not in index: \n",
|
281 |
+
" new_word.append(word[i])\n",
|
282 |
+
" continue\n",
|
283 |
+
" if (word[i] not in charset) and (word[i] not in digits):\n",
|
284 |
+
" # special token\n",
|
285 |
+
" new_word.append(word[i])\n",
|
286 |
+
" continue\n",
|
287 |
+
" op = random.random()\n",
|
288 |
+
" if op < 0.1: # add\n",
|
289 |
+
" new_word.append(random.choice(charset))\n",
|
290 |
+
" new_word.append(word[i])\n",
|
291 |
+
" elif op < 0.2: continue # remove\n",
|
292 |
+
" else: new_word.append(random.choice(charset)) # replace\n",
|
293 |
+
" return ''.join(new_word)"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 10,
|
299 |
+
"metadata": {},
|
300 |
+
"outputs": [],
|
301 |
+
"source": [
|
302 |
+
"lines = inp\n",
|
303 |
+
"degree = 1\n",
|
304 |
+
"keep_num = 50000\n",
|
305 |
+
"\n",
|
306 |
+
"random.shuffle(lines)\n",
|
307 |
+
"part_lines = lines[:keep_num]\n",
|
308 |
+
"inp, gt = [], []\n",
|
309 |
+
"\n",
|
310 |
+
"for w in part_lines:\n",
|
311 |
+
" w = w.strip().lower()\n",
|
312 |
+
" new_w = disturb(w, degree)\n",
|
313 |
+
" inp.append(new_w)\n",
|
314 |
+
" gt.append(w)\n",
|
315 |
+
" \n",
|
316 |
+
"eval_voc = os.path.join(root, f'WikiText-103_eval_d{degree}.csv')\n",
|
317 |
+
"pd.DataFrame({'inp':inp, 'gt':gt}).to_csv(eval_voc, index=None, sep='\\t')"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": 11,
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [
|
325 |
+
{
|
326 |
+
"data": {
|
327 |
+
"text/plain": [
|
328 |
+
"[('high', 'high'),\n",
|
329 |
+
" ('vctoria', 'victoria'),\n",
|
330 |
+
" ('mains', 'mains'),\n",
|
331 |
+
" ('bi', 'by'),\n",
|
332 |
+
" ('13', '13'),\n",
|
333 |
+
" ('ticnet', 'ticket'),\n",
|
334 |
+
" ('basil', 'basic'),\n",
|
335 |
+
" ('cut', 'cut'),\n",
|
336 |
+
" ('aqarky', 'anarky'),\n",
|
337 |
+
" ('the', 'the'),\n",
|
338 |
+
" ('tqe', 'the'),\n",
|
339 |
+
" ('oc', 'of'),\n",
|
340 |
+
" ('diwpersal', 'dispersal'),\n",
|
341 |
+
" ('traffic', 'traffic'),\n",
|
342 |
+
" ('in', 'in'),\n",
|
343 |
+
" ('the', 'the'),\n",
|
344 |
+
" ('ti', 'to'),\n",
|
345 |
+
" ('professionalms', 'professionals'),\n",
|
346 |
+
" ('747', '747'),\n",
|
347 |
+
" ('in', 'in'),\n",
|
348 |
+
" ('and', 'and'),\n",
|
349 |
+
" ('exezutive', 'executive'),\n",
|
350 |
+
" ('n400', 'n400'),\n",
|
351 |
+
" ('yusic', 'music'),\n",
|
352 |
+
" ('s', 's'),\n",
|
353 |
+
" ('henri', 'henry'),\n",
|
354 |
+
" ('heard', 'heard'),\n",
|
355 |
+
" ('thousand', 'thousand'),\n",
|
356 |
+
" ('to', 'to'),\n",
|
357 |
+
" ('arhy', 'army'),\n",
|
358 |
+
" ('td', 'to'),\n",
|
359 |
+
" ('a', 'a'),\n",
|
360 |
+
" ('oall', 'hall'),\n",
|
361 |
+
" ('qind', 'kind'),\n",
|
362 |
+
" ('od', 'on'),\n",
|
363 |
+
" ('samfria', 'samaria'),\n",
|
364 |
+
" ('driveway', 'driveway'),\n",
|
365 |
+
" ('which', 'which'),\n",
|
366 |
+
" ('wotk', 'work'),\n",
|
367 |
+
" ('ak', 'as'),\n",
|
368 |
+
" ('persona', 'persona'),\n",
|
369 |
+
" ('s', 's'),\n",
|
370 |
+
" ('melbourne', 'melbourne'),\n",
|
371 |
+
" ('apong', 'along'),\n",
|
372 |
+
" ('fas', 'was'),\n",
|
373 |
+
" ('thea', 'then'),\n",
|
374 |
+
" ('permcy', 'percy'),\n",
|
375 |
+
" ('nnd', 'and'),\n",
|
376 |
+
" ('alan', 'alan'),\n",
|
377 |
+
" ('13', '13'),\n",
|
378 |
+
" ('matteos', 'matters'),\n",
|
379 |
+
" ('against', 'against'),\n",
|
380 |
+
" ('nefion', 'nexion'),\n",
|
381 |
+
" ('held', 'held'),\n",
|
382 |
+
" ('negative', 'negative'),\n",
|
383 |
+
" ('gogd', 'good'),\n",
|
384 |
+
" ('the', 'the'),\n",
|
385 |
+
" ('thd', 'the'),\n",
|
386 |
+
" ('groening', 'groening'),\n",
|
387 |
+
" ('tqe', 'the'),\n",
|
388 |
+
" ('cwould', 'would'),\n",
|
389 |
+
" ('fb', 'ft'),\n",
|
390 |
+
" ('uniten', 'united'),\n",
|
391 |
+
" ('kone', 'one'),\n",
|
392 |
+
" ('thiy', 'this'),\n",
|
393 |
+
" ('lanren', 'lauren'),\n",
|
394 |
+
" ('s', 's'),\n",
|
395 |
+
" ('thhe', 'the'),\n",
|
396 |
+
" ('is', 'is'),\n",
|
397 |
+
" ('modep', 'model'),\n",
|
398 |
+
" ('weird', 'weird'),\n",
|
399 |
+
" ('angwer', 'answer'),\n",
|
400 |
+
" ('imprisxnment', 'imprisonment'),\n",
|
401 |
+
" ('marpery', 'margery'),\n",
|
402 |
+
" ('eventuanly', 'eventually'),\n",
|
403 |
+
" ('in', 'in'),\n",
|
404 |
+
" ('donnoa', 'donna'),\n",
|
405 |
+
" ('ik', 'it'),\n",
|
406 |
+
" ('reached', 'reached'),\n",
|
407 |
+
" ('at', 'at'),\n",
|
408 |
+
" ('excxted', 'excited'),\n",
|
409 |
+
" ('ws', 'was'),\n",
|
410 |
+
" ('raes', 'rates'),\n",
|
411 |
+
" ('the', 'the'),\n",
|
412 |
+
" ('firsq', 'first'),\n",
|
413 |
+
" ('concluyed', 'concluded'),\n",
|
414 |
+
" ('recdorded', 'recorded'),\n",
|
415 |
+
" ('fhe', 'the'),\n",
|
416 |
+
" ('uegiment', 'regiment'),\n",
|
417 |
+
" ('a', 'a'),\n",
|
418 |
+
" ('glanes', 'planes'),\n",
|
419 |
+
" ('conyrol', 'control'),\n",
|
420 |
+
" ('thr', 'the'),\n",
|
421 |
+
" ('arrext', 'arrest'),\n",
|
422 |
+
" ('bth', 'both'),\n",
|
423 |
+
" ('forward', 'forward'),\n",
|
424 |
+
" ('allowdd', 'allowed'),\n",
|
425 |
+
" ('revealed', 'revealed'),\n",
|
426 |
+
" ('mayagement', 'management'),\n",
|
427 |
+
" ('normal', 'normal')]"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
"execution_count": 11,
|
431 |
+
"metadata": {},
|
432 |
+
"output_type": "execute_result"
|
433 |
+
}
|
434 |
+
],
|
435 |
+
"source": [
|
436 |
+
"list(zip(inp, gt))[:100]"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": null,
|
442 |
+
"metadata": {},
|
443 |
+
"outputs": [],
|
444 |
+
"source": []
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"metadata": {
|
448 |
+
"kernelspec": {
|
449 |
+
"display_name": "Python 3",
|
450 |
+
"language": "python",
|
451 |
+
"name": "python3"
|
452 |
+
},
|
453 |
+
"language_info": {
|
454 |
+
"codemirror_mode": {
|
455 |
+
"name": "ipython",
|
456 |
+
"version": 3
|
457 |
+
},
|
458 |
+
"file_extension": ".py",
|
459 |
+
"mimetype": "text/x-python",
|
460 |
+
"name": "python",
|
461 |
+
"nbconvert_exporter": "python",
|
462 |
+
"pygments_lexer": "ipython3",
|
463 |
+
"version": "3.7.4"
|
464 |
+
}
|
465 |
+
},
|
466 |
+
"nbformat": 4,
|
467 |
+
"nbformat_minor": 4
|
468 |
+
}
|
notebooks/transforms.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.1.0
|
2 |
+
torchvision==0.3.0
|
3 |
+
fastai==1.0.60
|
4 |
+
LMDB
|
5 |
+
Pillow
|
6 |
+
opencv-python
|
7 |
+
tensorboardX
|
tools/create_lmdb_dataset.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" a modified version of CRNN torch repository https://github.com/bgshih/crnn/blob/master/tool/create_dataset.py """
|
2 |
+
|
3 |
+
import fire
|
4 |
+
import os
|
5 |
+
import lmdb
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def checkImageIsValid(imageBin):
|
12 |
+
if imageBin is None:
|
13 |
+
return False
|
14 |
+
imageBuf = np.frombuffer(imageBin, dtype=np.uint8)
|
15 |
+
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
|
16 |
+
imgH, imgW = img.shape[0], img.shape[1]
|
17 |
+
if imgH * imgW == 0:
|
18 |
+
return False
|
19 |
+
return True
|
20 |
+
|
21 |
+
|
22 |
+
def writeCache(env, cache):
|
23 |
+
with env.begin(write=True) as txn:
|
24 |
+
for k, v in cache.items():
|
25 |
+
txn.put(k, v)
|
26 |
+
|
27 |
+
|
28 |
+
def createDataset(inputPath, gtFile, outputPath, checkValid=True):
|
29 |
+
"""
|
30 |
+
Create LMDB dataset for training and evaluation.
|
31 |
+
ARGS:
|
32 |
+
inputPath : input folder path where starts imagePath
|
33 |
+
outputPath : LMDB output path
|
34 |
+
gtFile : list of image path and label
|
35 |
+
checkValid : if true, check the validity of every image
|
36 |
+
"""
|
37 |
+
os.makedirs(outputPath, exist_ok=True)
|
38 |
+
env = lmdb.open(outputPath, map_size=1099511627776)
|
39 |
+
cache = {}
|
40 |
+
cnt = 1
|
41 |
+
|
42 |
+
with open(gtFile, 'r', encoding='utf-8') as data:
|
43 |
+
datalist = data.readlines()
|
44 |
+
|
45 |
+
nSamples = len(datalist)
|
46 |
+
for i in range(nSamples):
|
47 |
+
imagePath, label = datalist[i].strip('\n').split('\t')
|
48 |
+
imagePath = os.path.join(inputPath, imagePath)
|
49 |
+
|
50 |
+
# # only use alphanumeric data
|
51 |
+
# if re.search('[^a-zA-Z0-9]', label):
|
52 |
+
# continue
|
53 |
+
|
54 |
+
if not os.path.exists(imagePath):
|
55 |
+
print('%s does not exist' % imagePath)
|
56 |
+
continue
|
57 |
+
with open(imagePath, 'rb') as f:
|
58 |
+
imageBin = f.read()
|
59 |
+
if checkValid:
|
60 |
+
try:
|
61 |
+
if not checkImageIsValid(imageBin):
|
62 |
+
print('%s is not a valid image' % imagePath)
|
63 |
+
continue
|
64 |
+
except:
|
65 |
+
print('error occured', i)
|
66 |
+
with open(outputPath + '/error_image_log.txt', 'a') as log:
|
67 |
+
log.write('%s-th image data occured error\n' % str(i))
|
68 |
+
continue
|
69 |
+
|
70 |
+
imageKey = 'image-%09d'.encode() % cnt
|
71 |
+
labelKey = 'label-%09d'.encode() % cnt
|
72 |
+
cache[imageKey] = imageBin
|
73 |
+
cache[labelKey] = label.encode()
|
74 |
+
|
75 |
+
if cnt % 1000 == 0:
|
76 |
+
writeCache(env, cache)
|
77 |
+
cache = {}
|
78 |
+
print('Written %d / %d' % (cnt, nSamples))
|
79 |
+
cnt += 1
|
80 |
+
nSamples = cnt-1
|
81 |
+
cache['num-samples'.encode()] = str(nSamples).encode()
|
82 |
+
writeCache(env, cache)
|
83 |
+
print('Created dataset with %d samples' % nSamples)
|
84 |
+
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
fire.Fire(createDataset)
|
tools/crop_by_word_bb_syn90k.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Crop by word bounding box
|
2 |
+
# Locate script with gt.mat
|
3 |
+
# $ python crop_by_word_bb.py
|
4 |
+
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import cv2
|
8 |
+
import scipy.io as sio
|
9 |
+
from itertools import chain
|
10 |
+
import numpy as np
|
11 |
+
import math
|
12 |
+
|
13 |
+
mat_contents = sio.loadmat('gt.mat')
|
14 |
+
|
15 |
+
image_names = mat_contents['imnames'][0]
|
16 |
+
cropped_indx = 0
|
17 |
+
start_img_indx = 0
|
18 |
+
gt_file = open('gt_oabc.txt', 'a')
|
19 |
+
err_file = open('err_oabc.txt', 'a')
|
20 |
+
|
21 |
+
for img_indx in range(start_img_indx, len(image_names)):
|
22 |
+
|
23 |
+
|
24 |
+
# Get image name
|
25 |
+
image_name_new = image_names[img_indx][0]
|
26 |
+
# print(image_name_new)
|
27 |
+
image_name = '/home/yxwang/pytorch/dataset/SynthText/img/'+ image_name_new
|
28 |
+
# print('IMAGE : {}.{}'.format(img_indx, image_name))
|
29 |
+
print('evaluating {} image'.format(img_indx), end='\r')
|
30 |
+
# Get text in image
|
31 |
+
txt = mat_contents['txt'][0][img_indx]
|
32 |
+
txt = [re.split(' \n|\n |\n| ', t.strip()) for t in txt]
|
33 |
+
txt = list(chain(*txt))
|
34 |
+
txt = [t for t in txt if len(t) > 0 ]
|
35 |
+
# print(txt) # ['Lines:', 'I', 'lost', 'Kevin', 'will', 'line', 'and', 'and', 'the', '(and', 'the', 'out', 'you', "don't", 'pkg']
|
36 |
+
# assert 1<0
|
37 |
+
|
38 |
+
# Open image
|
39 |
+
#img = Image.open(image_name)
|
40 |
+
img = cv2.imread(image_name, cv2.IMREAD_COLOR)
|
41 |
+
img_height, img_width, _ = img.shape
|
42 |
+
|
43 |
+
# Validation
|
44 |
+
if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2:
|
45 |
+
wordBBlen = 1
|
46 |
+
else:
|
47 |
+
wordBBlen = mat_contents['wordBB'][0][img_indx].shape[-1]
|
48 |
+
|
49 |
+
if wordBBlen == len(txt):
|
50 |
+
# Crop image and save
|
51 |
+
for word_indx in range(len(txt)):
|
52 |
+
# print('txt--',txt)
|
53 |
+
txt_temp = txt[word_indx]
|
54 |
+
len_now = len(txt_temp)
|
55 |
+
# txt_temp = re.sub('[^0-9a-zA-Z]+', '', txt_temp)
|
56 |
+
# print('txt_temp-1-',txt_temp)
|
57 |
+
txt_temp = re.sub('[^a-zA-Z]+', '', txt_temp)
|
58 |
+
# print('txt_temp-2-',txt_temp)
|
59 |
+
if len_now - len(txt_temp) != 0:
|
60 |
+
print('txt_temp-2-', txt_temp)
|
61 |
+
|
62 |
+
if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2: # only one word (2,4)
|
63 |
+
wordBB = mat_contents['wordBB'][0][img_indx]
|
64 |
+
else: # many words (2,4,num_words)
|
65 |
+
wordBB = mat_contents['wordBB'][0][img_indx][:, :, word_indx]
|
66 |
+
|
67 |
+
if np.shape(wordBB) != (2, 4):
|
68 |
+
err_log = 'malformed box index: {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
|
69 |
+
err_file.write(err_log)
|
70 |
+
# print(err_log)
|
71 |
+
continue
|
72 |
+
|
73 |
+
pts1 = np.float32([[wordBB[0][0], wordBB[1][0]],
|
74 |
+
[wordBB[0][3], wordBB[1][3]],
|
75 |
+
[wordBB[0][1], wordBB[1][1]],
|
76 |
+
[wordBB[0][2], wordBB[1][2]]])
|
77 |
+
height = math.sqrt((wordBB[0][0] - wordBB[0][3])**2 + (wordBB[1][0] - wordBB[1][3])**2)
|
78 |
+
width = math.sqrt((wordBB[0][0] - wordBB[0][1])**2 + (wordBB[1][0] - wordBB[1][1])**2)
|
79 |
+
|
80 |
+
# Coord validation check
|
81 |
+
if (height * width) <= 0:
|
82 |
+
err_log = 'empty file : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
|
83 |
+
err_file.write(err_log)
|
84 |
+
# print(err_log)
|
85 |
+
continue
|
86 |
+
elif (height * width) > (img_height * img_width):
|
87 |
+
err_log = 'too big box : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
|
88 |
+
err_file.write(err_log)
|
89 |
+
# print(err_log)
|
90 |
+
continue
|
91 |
+
else:
|
92 |
+
valid = True
|
93 |
+
for i in range(2):
|
94 |
+
for j in range(4):
|
95 |
+
if wordBB[i][j] < 0 or wordBB[i][j] > img.shape[1 - i]:
|
96 |
+
valid = False
|
97 |
+
break
|
98 |
+
if not valid:
|
99 |
+
break
|
100 |
+
if not valid:
|
101 |
+
err_log = 'invalid coord : {}\t{}\t{}\t{}\t{}\n'.format(
|
102 |
+
image_name, txt[word_indx], wordBB, (width, height), (img_width, img_height))
|
103 |
+
err_file.write(err_log)
|
104 |
+
# print(err_log)
|
105 |
+
continue
|
106 |
+
|
107 |
+
pts2 = np.float32([[0, 0],
|
108 |
+
[0, height],
|
109 |
+
[width, 0],
|
110 |
+
[width, height]])
|
111 |
+
|
112 |
+
x_min = np.int(round(min(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
|
113 |
+
x_max = np.int(round(max(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
|
114 |
+
y_min = np.int(round(min(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
|
115 |
+
y_max = np.int(round(max(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
|
116 |
+
# print(x_min, x_max, y_min, y_max)
|
117 |
+
# print(img.shape)
|
118 |
+
# assert 1<0
|
119 |
+
if len(img.shape) == 3:
|
120 |
+
img_cropped = img[ y_min:y_max:1, x_min:x_max:1, :]
|
121 |
+
else:
|
122 |
+
img_cropped = img[ y_min:y_max:1, x_min:x_max:1]
|
123 |
+
dir_name = '/home/yxwang/pytorch/dataset/SynthText/cropped-oabc/{}'.format(image_name_new.split('/')[0])
|
124 |
+
# print('dir_name--',dir_name)
|
125 |
+
if not os.path.exists(dir_name):
|
126 |
+
os.mkdir(dir_name)
|
127 |
+
cropped_file_name = "{}/{}_{}_{}.jpg".format(dir_name, cropped_indx,
|
128 |
+
image_name.split('/')[-1][:-len('.jpg')], word_indx)
|
129 |
+
# print('cropped_file_name--',cropped_file_name)
|
130 |
+
# print('img_cropped--',img_cropped.shape)
|
131 |
+
if img_cropped.shape[0] == 0 or img_cropped.shape[1] == 0:
|
132 |
+
err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
|
133 |
+
img_indx], mat_contents['wordBB'][0][img_indx])
|
134 |
+
err_file.write(err_log)
|
135 |
+
# print(err_log)
|
136 |
+
continue
|
137 |
+
# print('img_cropped--',img_cropped)
|
138 |
+
|
139 |
+
# img_cropped.save(cropped_file_name)
|
140 |
+
cv2.imwrite(cropped_file_name, img_cropped)
|
141 |
+
cropped_indx += 1
|
142 |
+
gt_file.write('%s\t%s\n' % (cropped_file_name, txt[word_indx]))
|
143 |
+
|
144 |
+
# if cropped_indx>10:
|
145 |
+
# assert 1<0
|
146 |
+
# assert 1 < 0
|
147 |
+
else:
|
148 |
+
err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
|
149 |
+
img_indx], mat_contents['wordBB'][0][img_indx])
|
150 |
+
err_file.write(err_log)
|
151 |
+
# print(err_log)
|
152 |
+
gt_file.close()
|
153 |
+
err_file.close()
|
transforms.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numbers
|
3 |
+
import random
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from torchvision import transforms
|
9 |
+
from torchvision.transforms import Compose
|
10 |
+
|
11 |
+
|
12 |
+
def sample_asym(magnitude, size=None):
|
13 |
+
return np.random.beta(1, 4, size) * magnitude
|
14 |
+
|
15 |
+
def sample_sym(magnitude, size=None):
|
16 |
+
return (np.random.beta(4, 4, size=size) - 0.5) * 2 * magnitude
|
17 |
+
|
18 |
+
def sample_uniform(low, high, size=None):
|
19 |
+
return np.random.uniform(low, high, size=size)
|
20 |
+
|
21 |
+
def get_interpolation(type='random'):
|
22 |
+
if type == 'random':
|
23 |
+
choice = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA]
|
24 |
+
interpolation = choice[random.randint(0, len(choice)-1)]
|
25 |
+
elif type == 'nearest': interpolation = cv2.INTER_NEAREST
|
26 |
+
elif type == 'linear': interpolation = cv2.INTER_LINEAR
|
27 |
+
elif type == 'cubic': interpolation = cv2.INTER_CUBIC
|
28 |
+
elif type == 'area': interpolation = cv2.INTER_AREA
|
29 |
+
else: raise TypeError('Interpolation types only nearest, linear, cubic, area are supported!')
|
30 |
+
return interpolation
|
31 |
+
|
32 |
+
class CVRandomRotation(object):
|
33 |
+
def __init__(self, degrees=15):
|
34 |
+
assert isinstance(degrees, numbers.Number), "degree should be a single number."
|
35 |
+
assert degrees >= 0, "degree must be positive."
|
36 |
+
self.degrees = degrees
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def get_params(degrees):
|
40 |
+
return sample_sym(degrees)
|
41 |
+
|
42 |
+
def __call__(self, img):
|
43 |
+
angle = self.get_params(self.degrees)
|
44 |
+
src_h, src_w = img.shape[:2]
|
45 |
+
M = cv2.getRotationMatrix2D(center=(src_w/2, src_h/2), angle=angle, scale=1.0)
|
46 |
+
abs_cos, abs_sin = abs(M[0,0]), abs(M[0,1])
|
47 |
+
dst_w = int(src_h * abs_sin + src_w * abs_cos)
|
48 |
+
dst_h = int(src_h * abs_cos + src_w * abs_sin)
|
49 |
+
M[0, 2] += (dst_w - src_w)/2
|
50 |
+
M[1, 2] += (dst_h - src_h)/2
|
51 |
+
|
52 |
+
flags = get_interpolation()
|
53 |
+
return cv2.warpAffine(img, M, (dst_w, dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE)
|
54 |
+
|
55 |
+
class CVRandomAffine(object):
|
56 |
+
def __init__(self, degrees, translate=None, scale=None, shear=None):
|
57 |
+
assert isinstance(degrees, numbers.Number), "degree should be a single number."
|
58 |
+
assert degrees >= 0, "degree must be positive."
|
59 |
+
self.degrees = degrees
|
60 |
+
|
61 |
+
if translate is not None:
|
62 |
+
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
|
63 |
+
"translate should be a list or tuple and it must be of length 2."
|
64 |
+
for t in translate:
|
65 |
+
if not (0.0 <= t <= 1.0):
|
66 |
+
raise ValueError("translation values should be between 0 and 1")
|
67 |
+
self.translate = translate
|
68 |
+
|
69 |
+
if scale is not None:
|
70 |
+
assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
|
71 |
+
"scale should be a list or tuple and it must be of length 2."
|
72 |
+
for s in scale:
|
73 |
+
if s <= 0:
|
74 |
+
raise ValueError("scale values should be positive")
|
75 |
+
self.scale = scale
|
76 |
+
|
77 |
+
if shear is not None:
|
78 |
+
if isinstance(shear, numbers.Number):
|
79 |
+
if shear < 0:
|
80 |
+
raise ValueError("If shear is a single number, it must be positive.")
|
81 |
+
self.shear = [shear]
|
82 |
+
else:
|
83 |
+
assert isinstance(shear, (tuple, list)) and (len(shear) == 2), \
|
84 |
+
"shear should be a list or tuple and it must be of length 2."
|
85 |
+
self.shear = shear
|
86 |
+
else:
|
87 |
+
self.shear = shear
|
88 |
+
|
89 |
+
def _get_inverse_affine_matrix(self, center, angle, translate, scale, shear):
|
90 |
+
# https://github.com/pytorch/vision/blob/v0.4.0/torchvision/transforms/functional.py#L717
|
91 |
+
from numpy import sin, cos, tan
|
92 |
+
|
93 |
+
if isinstance(shear, numbers.Number):
|
94 |
+
shear = [shear, 0]
|
95 |
+
|
96 |
+
if not isinstance(shear, (tuple, list)) and len(shear) == 2:
|
97 |
+
raise ValueError(
|
98 |
+
"Shear should be a single value or a tuple/list containing " +
|
99 |
+
"two values. Got {}".format(shear))
|
100 |
+
|
101 |
+
rot = math.radians(angle)
|
102 |
+
sx, sy = [math.radians(s) for s in shear]
|
103 |
+
|
104 |
+
cx, cy = center
|
105 |
+
tx, ty = translate
|
106 |
+
|
107 |
+
# RSS without scaling
|
108 |
+
a = cos(rot - sy) / cos(sy)
|
109 |
+
b = -cos(rot - sy) * tan(sx) / cos(sy) - sin(rot)
|
110 |
+
c = sin(rot - sy) / cos(sy)
|
111 |
+
d = -sin(rot - sy) * tan(sx) / cos(sy) + cos(rot)
|
112 |
+
|
113 |
+
# Inverted rotation matrix with scale and shear
|
114 |
+
# det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
|
115 |
+
M = [d, -b, 0,
|
116 |
+
-c, a, 0]
|
117 |
+
M = [x / scale for x in M]
|
118 |
+
|
119 |
+
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
|
120 |
+
M[2] += M[0] * (-cx - tx) + M[1] * (-cy - ty)
|
121 |
+
M[5] += M[3] * (-cx - tx) + M[4] * (-cy - ty)
|
122 |
+
|
123 |
+
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
|
124 |
+
M[2] += cx
|
125 |
+
M[5] += cy
|
126 |
+
return M
|
127 |
+
|
128 |
+
@staticmethod
|
129 |
+
def get_params(degrees, translate, scale_ranges, shears, height):
|
130 |
+
angle = sample_sym(degrees)
|
131 |
+
if translate is not None:
|
132 |
+
max_dx = translate[0] * height
|
133 |
+
max_dy = translate[1] * height
|
134 |
+
translations = (np.round(sample_sym(max_dx)), np.round(sample_sym(max_dy)))
|
135 |
+
else:
|
136 |
+
translations = (0, 0)
|
137 |
+
|
138 |
+
if scale_ranges is not None:
|
139 |
+
scale = sample_uniform(scale_ranges[0], scale_ranges[1])
|
140 |
+
else:
|
141 |
+
scale = 1.0
|
142 |
+
|
143 |
+
if shears is not None:
|
144 |
+
if len(shears) == 1:
|
145 |
+
shear = [sample_sym(shears[0]), 0.]
|
146 |
+
elif len(shears) == 2:
|
147 |
+
shear = [sample_sym(shears[0]), sample_sym(shears[1])]
|
148 |
+
else:
|
149 |
+
shear = 0.0
|
150 |
+
|
151 |
+
return angle, translations, scale, shear
|
152 |
+
|
153 |
+
|
154 |
+
def __call__(self, img):
|
155 |
+
src_h, src_w = img.shape[:2]
|
156 |
+
angle, translate, scale, shear = self.get_params(
|
157 |
+
self.degrees, self.translate, self.scale, self.shear, src_h)
|
158 |
+
|
159 |
+
M = self._get_inverse_affine_matrix((src_w/2, src_h/2), angle, (0, 0), scale, shear)
|
160 |
+
M = np.array(M).reshape(2,3)
|
161 |
+
|
162 |
+
startpoints = [(0, 0), (src_w - 1, 0), (src_w - 1, src_h - 1), (0, src_h - 1)]
|
163 |
+
project = lambda x, y, a, b, c: int(a*x + b*y + c)
|
164 |
+
endpoints = [(project(x, y, *M[0]), project(x, y, *M[1])) for x, y in startpoints]
|
165 |
+
|
166 |
+
rect = cv2.minAreaRect(np.array(endpoints))
|
167 |
+
bbox = cv2.boxPoints(rect).astype(dtype=np.int)
|
168 |
+
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
|
169 |
+
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
|
170 |
+
|
171 |
+
dst_w = int(max_x - min_x)
|
172 |
+
dst_h = int(max_y - min_y)
|
173 |
+
M[0, 2] += (dst_w - src_w) / 2
|
174 |
+
M[1, 2] += (dst_h - src_h) / 2
|
175 |
+
|
176 |
+
# add translate
|
177 |
+
dst_w += int(abs(translate[0]))
|
178 |
+
dst_h += int(abs(translate[1]))
|
179 |
+
if translate[0] < 0: M[0, 2] += abs(translate[0])
|
180 |
+
if translate[1] < 0: M[1, 2] += abs(translate[1])
|
181 |
+
|
182 |
+
flags = get_interpolation()
|
183 |
+
return cv2.warpAffine(img, M, (dst_w , dst_h), flags=flags, borderMode=cv2.BORDER_REPLICATE)
|
184 |
+
|
185 |
+
class CVRandomPerspective(object):
|
186 |
+
def __init__(self, distortion=0.5):
|
187 |
+
self.distortion = distortion
|
188 |
+
|
189 |
+
def get_params(self, width, height, distortion):
|
190 |
+
offset_h = sample_asym(distortion * height / 2, size=4).astype(dtype=np.int)
|
191 |
+
offset_w = sample_asym(distortion * width / 2, size=4).astype(dtype=np.int)
|
192 |
+
topleft = ( offset_w[0], offset_h[0])
|
193 |
+
topright = (width - 1 - offset_w[1], offset_h[1])
|
194 |
+
botright = (width - 1 - offset_w[2], height - 1 - offset_h[2])
|
195 |
+
botleft = ( offset_w[3], height - 1 - offset_h[3])
|
196 |
+
|
197 |
+
startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
|
198 |
+
endpoints = [topleft, topright, botright, botleft]
|
199 |
+
return np.array(startpoints, dtype=np.float32), np.array(endpoints, dtype=np.float32)
|
200 |
+
|
201 |
+
def __call__(self, img):
|
202 |
+
height, width = img.shape[:2]
|
203 |
+
startpoints, endpoints = self.get_params(width, height, self.distortion)
|
204 |
+
M = cv2.getPerspectiveTransform(startpoints, endpoints)
|
205 |
+
|
206 |
+
# TODO: more robust way to crop image
|
207 |
+
rect = cv2.minAreaRect(endpoints)
|
208 |
+
bbox = cv2.boxPoints(rect).astype(dtype=np.int)
|
209 |
+
max_x, max_y = bbox[:, 0].max(), bbox[:, 1].max()
|
210 |
+
min_x, min_y = bbox[:, 0].min(), bbox[:, 1].min()
|
211 |
+
min_x, min_y = max(min_x, 0), max(min_y, 0)
|
212 |
+
|
213 |
+
flags = get_interpolation()
|
214 |
+
img = cv2.warpPerspective(img, M, (max_x, max_y), flags=flags, borderMode=cv2.BORDER_REPLICATE)
|
215 |
+
img = img[min_y:, min_x:]
|
216 |
+
return img
|
217 |
+
|
218 |
+
class CVRescale(object):
|
219 |
+
|
220 |
+
def __init__(self, factor=4, base_size=(128, 512)):
|
221 |
+
""" Define image scales using gaussian pyramid and rescale image to target scale.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
factor: the decayed factor from base size, factor=4 keeps target scale by default.
|
225 |
+
base_size: base size the build the bottom layer of pyramid
|
226 |
+
"""
|
227 |
+
if isinstance(factor, numbers.Number):
|
228 |
+
self.factor = round(sample_uniform(0, factor))
|
229 |
+
elif isinstance(factor, (tuple, list)) and len(factor) == 2:
|
230 |
+
self.factor = round(sample_uniform(factor[0], factor[1]))
|
231 |
+
else:
|
232 |
+
raise Exception('factor must be number or list with length 2')
|
233 |
+
# assert factor is valid
|
234 |
+
self.base_h, self.base_w = base_size[:2]
|
235 |
+
|
236 |
+
def __call__(self, img):
|
237 |
+
if self.factor == 0: return img
|
238 |
+
src_h, src_w = img.shape[:2]
|
239 |
+
cur_w, cur_h = self.base_w, self.base_h
|
240 |
+
scale_img = cv2.resize(img, (cur_w, cur_h), interpolation=get_interpolation())
|
241 |
+
for _ in range(self.factor):
|
242 |
+
scale_img = cv2.pyrDown(scale_img)
|
243 |
+
scale_img = cv2.resize(scale_img, (src_w, src_h), interpolation=get_interpolation())
|
244 |
+
return scale_img
|
245 |
+
|
246 |
+
class CVGaussianNoise(object):
|
247 |
+
def __init__(self, mean=0, var=20):
|
248 |
+
self.mean = mean
|
249 |
+
if isinstance(var, numbers.Number):
|
250 |
+
self.var = max(int(sample_asym(var)), 1)
|
251 |
+
elif isinstance(var, (tuple, list)) and len(var) == 2:
|
252 |
+
self.var = int(sample_uniform(var[0], var[1]))
|
253 |
+
else:
|
254 |
+
raise Exception('degree must be number or list with length 2')
|
255 |
+
|
256 |
+
def __call__(self, img):
|
257 |
+
noise = np.random.normal(self.mean, self.var**0.5, img.shape)
|
258 |
+
img = np.clip(img + noise, 0, 255).astype(np.uint8)
|
259 |
+
return img
|
260 |
+
|
261 |
+
class CVMotionBlur(object):
|
262 |
+
def __init__(self, degrees=12, angle=90):
|
263 |
+
if isinstance(degrees, numbers.Number):
|
264 |
+
self.degree = max(int(sample_asym(degrees)), 1)
|
265 |
+
elif isinstance(degrees, (tuple, list)) and len(degrees) == 2:
|
266 |
+
self.degree = int(sample_uniform(degrees[0], degrees[1]))
|
267 |
+
else:
|
268 |
+
raise Exception('degree must be number or list with length 2')
|
269 |
+
self.angle = sample_uniform(-angle, angle)
|
270 |
+
|
271 |
+
def __call__(self, img):
|
272 |
+
M = cv2.getRotationMatrix2D((self.degree // 2, self.degree // 2), self.angle, 1)
|
273 |
+
motion_blur_kernel = np.zeros((self.degree, self.degree))
|
274 |
+
motion_blur_kernel[self.degree // 2, :] = 1
|
275 |
+
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (self.degree, self.degree))
|
276 |
+
motion_blur_kernel = motion_blur_kernel / self.degree
|
277 |
+
img = cv2.filter2D(img, -1, motion_blur_kernel)
|
278 |
+
img = np.clip(img, 0, 255).astype(np.uint8)
|
279 |
+
return img
|
280 |
+
|
281 |
+
class CVGeometry(object):
|
282 |
+
def __init__(self, degrees=15, translate=(0.3, 0.3), scale=(0.5, 2.),
|
283 |
+
shear=(45, 15), distortion=0.5, p=0.5):
|
284 |
+
self.p = p
|
285 |
+
type_p = random.random()
|
286 |
+
if type_p < 0.33:
|
287 |
+
self.transforms = CVRandomRotation(degrees=degrees)
|
288 |
+
elif type_p < 0.66:
|
289 |
+
self.transforms = CVRandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear)
|
290 |
+
else:
|
291 |
+
self.transforms = CVRandomPerspective(distortion=distortion)
|
292 |
+
|
293 |
+
def __call__(self, img):
|
294 |
+
if random.random() < self.p:
|
295 |
+
img = np.array(img)
|
296 |
+
return Image.fromarray(self.transforms(img))
|
297 |
+
else: return img
|
298 |
+
|
299 |
+
class CVDeterioration(object):
|
300 |
+
def __init__(self, var, degrees, factor, p=0.5):
|
301 |
+
self.p = p
|
302 |
+
transforms = []
|
303 |
+
if var is not None:
|
304 |
+
transforms.append(CVGaussianNoise(var=var))
|
305 |
+
if degrees is not None:
|
306 |
+
transforms.append(CVMotionBlur(degrees=degrees))
|
307 |
+
if factor is not None:
|
308 |
+
transforms.append(CVRescale(factor=factor))
|
309 |
+
|
310 |
+
random.shuffle(transforms)
|
311 |
+
transforms = Compose(transforms)
|
312 |
+
self.transforms = transforms
|
313 |
+
|
314 |
+
def __call__(self, img):
|
315 |
+
if random.random() < self.p:
|
316 |
+
img = np.array(img)
|
317 |
+
return Image.fromarray(self.transforms(img))
|
318 |
+
else: return img
|
319 |
+
|
320 |
+
|
321 |
+
class CVColorJitter(object):
|
322 |
+
def __init__(self, brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.5):
|
323 |
+
self.p = p
|
324 |
+
self.transforms = transforms.ColorJitter(brightness=brightness, contrast=contrast,
|
325 |
+
saturation=saturation, hue=hue)
|
326 |
+
|
327 |
+
def __call__(self, img):
|
328 |
+
if random.random() < self.p: return self.transforms(img)
|
329 |
+
else: return img
|
utils.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import yaml
|
9 |
+
from matplotlib import colors
|
10 |
+
from matplotlib import pyplot as plt
|
11 |
+
from torch import Tensor, nn
|
12 |
+
from torch.utils.data import ConcatDataset
|
13 |
+
|
14 |
+
class CharsetMapper(object):
|
15 |
+
"""A simple class to map ids into strings.
|
16 |
+
|
17 |
+
It works only when the character set is 1:1 mapping between individual
|
18 |
+
characters and individual ids.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self,
|
22 |
+
filename='',
|
23 |
+
max_length=30,
|
24 |
+
null_char=u'\u2591'):
|
25 |
+
"""Creates a lookup table.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
filename: Path to charset file which maps characters to ids.
|
29 |
+
max_sequence_length: The max length of ids and string.
|
30 |
+
null_char: A unicode character used to replace '<null>' character.
|
31 |
+
the default value is a light shade block '░'.
|
32 |
+
"""
|
33 |
+
self.null_char = null_char
|
34 |
+
self.max_length = max_length
|
35 |
+
|
36 |
+
self.label_to_char = self._read_charset(filename)
|
37 |
+
self.char_to_label = dict(map(reversed, self.label_to_char.items()))
|
38 |
+
self.num_classes = len(self.label_to_char)
|
39 |
+
|
40 |
+
def _read_charset(self, filename):
|
41 |
+
"""Reads a charset definition from a tab separated text file.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
filename: a path to the charset file.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
a dictionary with keys equal to character codes and values - unicode
|
48 |
+
characters.
|
49 |
+
"""
|
50 |
+
import re
|
51 |
+
pattern = re.compile(r'(\d+)\t(.+)')
|
52 |
+
charset = {}
|
53 |
+
self.null_label = 0
|
54 |
+
charset[self.null_label] = self.null_char
|
55 |
+
with open(filename, 'r') as f:
|
56 |
+
for i, line in enumerate(f):
|
57 |
+
m = pattern.match(line)
|
58 |
+
assert m, f'Incorrect charset file. line #{i}: {line}'
|
59 |
+
label = int(m.group(1)) + 1
|
60 |
+
char = m.group(2)
|
61 |
+
charset[label] = char
|
62 |
+
return charset
|
63 |
+
|
64 |
+
def trim(self, text):
|
65 |
+
assert isinstance(text, str)
|
66 |
+
return text.replace(self.null_char, '')
|
67 |
+
|
68 |
+
def get_text(self, labels, length=None, padding=True, trim=False):
|
69 |
+
""" Returns a string corresponding to a sequence of character ids.
|
70 |
+
"""
|
71 |
+
length = length if length else self.max_length
|
72 |
+
labels = [l.item() if isinstance(l, Tensor) else int(l) for l in labels]
|
73 |
+
if padding:
|
74 |
+
labels = labels + [self.null_label] * (length-len(labels))
|
75 |
+
text = ''.join([self.label_to_char[label] for label in labels])
|
76 |
+
if trim: text = self.trim(text)
|
77 |
+
return text
|
78 |
+
|
79 |
+
def get_labels(self, text, length=None, padding=True, case_sensitive=False):
|
80 |
+
""" Returns the labels of the corresponding text.
|
81 |
+
"""
|
82 |
+
length = length if length else self.max_length
|
83 |
+
if padding:
|
84 |
+
text = text + self.null_char * (length - len(text))
|
85 |
+
if not case_sensitive:
|
86 |
+
text = text.lower()
|
87 |
+
labels = [self.char_to_label[char] for char in text]
|
88 |
+
return labels
|
89 |
+
|
90 |
+
def pad_labels(self, labels, length=None):
|
91 |
+
length = length if length else self.max_length
|
92 |
+
|
93 |
+
return labels + [self.null_label] * (length - len(labels))
|
94 |
+
|
95 |
+
@property
|
96 |
+
def digits(self):
|
97 |
+
return '0123456789'
|
98 |
+
|
99 |
+
@property
|
100 |
+
def digit_labels(self):
|
101 |
+
return self.get_labels(self.digits, padding=False)
|
102 |
+
|
103 |
+
@property
|
104 |
+
def alphabets(self):
|
105 |
+
all_chars = list(self.char_to_label.keys())
|
106 |
+
valid_chars = []
|
107 |
+
for c in all_chars:
|
108 |
+
if c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ':
|
109 |
+
valid_chars.append(c)
|
110 |
+
return ''.join(valid_chars)
|
111 |
+
|
112 |
+
@property
|
113 |
+
def alphabet_labels(self):
|
114 |
+
return self.get_labels(self.alphabets, padding=False)
|
115 |
+
|
116 |
+
|
117 |
+
class Timer(object):
|
118 |
+
"""A simple timer."""
|
119 |
+
def __init__(self):
|
120 |
+
self.data_time = 0.
|
121 |
+
self.data_diff = 0.
|
122 |
+
self.data_total_time = 0.
|
123 |
+
self.data_call = 0
|
124 |
+
self.running_time = 0.
|
125 |
+
self.running_diff = 0.
|
126 |
+
self.running_total_time = 0.
|
127 |
+
self.running_call = 0
|
128 |
+
|
129 |
+
def tic(self):
|
130 |
+
self.start_time = time.time()
|
131 |
+
self.running_time = self.start_time
|
132 |
+
|
133 |
+
def toc_data(self):
|
134 |
+
self.data_time = time.time()
|
135 |
+
self.data_diff = self.data_time - self.running_time
|
136 |
+
self.data_total_time += self.data_diff
|
137 |
+
self.data_call += 1
|
138 |
+
|
139 |
+
def toc_running(self):
|
140 |
+
self.running_time = time.time()
|
141 |
+
self.running_diff = self.running_time - self.data_time
|
142 |
+
self.running_total_time += self.running_diff
|
143 |
+
self.running_call += 1
|
144 |
+
|
145 |
+
def total_time(self):
|
146 |
+
return self.data_total_time + self.running_total_time
|
147 |
+
|
148 |
+
def average_time(self):
|
149 |
+
return self.average_data_time() + self.average_running_time()
|
150 |
+
|
151 |
+
def average_data_time(self):
|
152 |
+
return self.data_total_time / (self.data_call or 1)
|
153 |
+
|
154 |
+
def average_running_time(self):
|
155 |
+
return self.running_total_time / (self.running_call or 1)
|
156 |
+
|
157 |
+
|
158 |
+
class Logger(object):
|
159 |
+
_handle = None
|
160 |
+
_root = None
|
161 |
+
|
162 |
+
@staticmethod
|
163 |
+
def init(output_dir, name, phase):
|
164 |
+
format = '[%(asctime)s %(filename)s:%(lineno)d %(levelname)s {}] ' \
|
165 |
+
'%(message)s'.format(name)
|
166 |
+
logging.basicConfig(level=logging.INFO, format=format)
|
167 |
+
|
168 |
+
try: os.makedirs(output_dir)
|
169 |
+
except: pass
|
170 |
+
config_path = os.path.join(output_dir, f'{phase}.txt')
|
171 |
+
Logger._handle = logging.FileHandler(config_path)
|
172 |
+
Logger._root = logging.getLogger()
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def enable_file():
|
176 |
+
if Logger._handle is None or Logger._root is None:
|
177 |
+
raise Exception('Invoke Logger.init() first!')
|
178 |
+
Logger._root.addHandler(Logger._handle)
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def disable_file():
|
182 |
+
if Logger._handle is None or Logger._root is None:
|
183 |
+
raise Exception('Invoke Logger.init() first!')
|
184 |
+
Logger._root.removeHandler(Logger._handle)
|
185 |
+
|
186 |
+
|
187 |
+
class Config(object):
|
188 |
+
|
189 |
+
def __init__(self, config_path, host=True):
|
190 |
+
def __dict2attr(d, prefix=''):
|
191 |
+
for k, v in d.items():
|
192 |
+
if isinstance(v, dict):
|
193 |
+
__dict2attr(v, f'{prefix}{k}_')
|
194 |
+
else:
|
195 |
+
if k == 'phase':
|
196 |
+
assert v in ['train', 'test']
|
197 |
+
if k == 'stage':
|
198 |
+
assert v in ['pretrain-vision', 'pretrain-language',
|
199 |
+
'train-semi-super', 'train-super']
|
200 |
+
self.__setattr__(f'{prefix}{k}', v)
|
201 |
+
|
202 |
+
assert os.path.exists(config_path), '%s does not exists!' % config_path
|
203 |
+
with open(config_path) as file:
|
204 |
+
config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
205 |
+
with open('configs/template.yaml') as file:
|
206 |
+
default_config_dict = yaml.load(file, Loader=yaml.FullLoader)
|
207 |
+
__dict2attr(default_config_dict)
|
208 |
+
__dict2attr(config_dict)
|
209 |
+
self.global_workdir = os.path.join(self.global_workdir, self.global_name)
|
210 |
+
|
211 |
+
def __getattr__(self, item):
|
212 |
+
attr = self.__dict__.get(item)
|
213 |
+
if attr is None:
|
214 |
+
attr = dict()
|
215 |
+
prefix = f'{item}_'
|
216 |
+
for k, v in self.__dict__.items():
|
217 |
+
if k.startswith(prefix):
|
218 |
+
n = k.replace(prefix, '')
|
219 |
+
attr[n] = v
|
220 |
+
return attr if len(attr) > 0 else None
|
221 |
+
else:
|
222 |
+
return attr
|
223 |
+
|
224 |
+
def __repr__(self):
|
225 |
+
str = 'ModelConfig(\n'
|
226 |
+
for i, (k, v) in enumerate(sorted(vars(self).items())):
|
227 |
+
str += f'\t({i}): {k} = {v}\n'
|
228 |
+
str += ')'
|
229 |
+
return str
|
230 |
+
|
231 |
+
def blend_mask(image, mask, alpha=0.5, cmap='jet', color='b', color_alpha=1.0):
|
232 |
+
# normalize mask
|
233 |
+
mask = (mask-mask.min()) / (mask.max() - mask.min() + np.finfo(float).eps)
|
234 |
+
if mask.shape != image.shape:
|
235 |
+
mask = cv2.resize(mask,(image.shape[1], image.shape[0]))
|
236 |
+
# get color map
|
237 |
+
color_map = plt.get_cmap(cmap)
|
238 |
+
mask = color_map(mask)[:,:,:3]
|
239 |
+
# convert float to uint8
|
240 |
+
mask = (mask * 255).astype(dtype=np.uint8)
|
241 |
+
|
242 |
+
# set the basic color
|
243 |
+
basic_color = np.array(colors.to_rgb(color)) * 255
|
244 |
+
basic_color = np.tile(basic_color, [image.shape[0], image.shape[1], 1])
|
245 |
+
basic_color = basic_color.astype(dtype=np.uint8)
|
246 |
+
# blend with basic color
|
247 |
+
blended_img = cv2.addWeighted(image, color_alpha, basic_color, 1-color_alpha, 0)
|
248 |
+
# blend with mask
|
249 |
+
blended_img = cv2.addWeighted(blended_img, alpha, mask, 1-alpha, 0)
|
250 |
+
|
251 |
+
return blended_img
|
252 |
+
|
253 |
+
def onehot(label, depth, device=None):
|
254 |
+
"""
|
255 |
+
Args:
|
256 |
+
label: shape (n1, n2, ..., )
|
257 |
+
depth: a scalar
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
onehot: (n1, n2, ..., depth)
|
261 |
+
"""
|
262 |
+
if not isinstance(label, torch.Tensor):
|
263 |
+
label = torch.tensor(label, device=device)
|
264 |
+
onehot = torch.zeros(label.size() + torch.Size([depth]), device=device)
|
265 |
+
onehot = onehot.scatter_(-1, label.unsqueeze(-1), 1)
|
266 |
+
|
267 |
+
return onehot
|
268 |
+
|
269 |
+
class MyDataParallel(nn.DataParallel):
|
270 |
+
|
271 |
+
def gather(self, outputs, target_device):
|
272 |
+
r"""
|
273 |
+
Gathers tensors from different GPUs on a specified device
|
274 |
+
(-1 means the CPU).
|
275 |
+
"""
|
276 |
+
def gather_map(outputs):
|
277 |
+
out = outputs[0]
|
278 |
+
if isinstance(out, (str, int, float)):
|
279 |
+
return out
|
280 |
+
if isinstance(out, list) and isinstance(out[0], str):
|
281 |
+
return [o for out in outputs for o in out]
|
282 |
+
if isinstance(out, torch.Tensor):
|
283 |
+
return torch.nn.parallel._functions.Gather.apply(target_device, self.dim, *outputs)
|
284 |
+
if out is None:
|
285 |
+
return None
|
286 |
+
if isinstance(out, dict):
|
287 |
+
if not all((len(out) == len(d) for d in outputs)):
|
288 |
+
raise ValueError('All dicts must have the same number of keys')
|
289 |
+
return type(out)(((k, gather_map([d[k] for d in outputs]))
|
290 |
+
for k in out))
|
291 |
+
return type(out)(map(gather_map, zip(*outputs)))
|
292 |
+
|
293 |
+
# Recursive function calls like this create reference cycles.
|
294 |
+
# Setting the function to None clears the refcycle.
|
295 |
+
try:
|
296 |
+
res = gather_map(outputs)
|
297 |
+
finally:
|
298 |
+
gather_map = None
|
299 |
+
return res
|
300 |
+
|
301 |
+
|
302 |
+
class MyConcatDataset(ConcatDataset):
|
303 |
+
def __getattr__(self, k):
|
304 |
+
return getattr(self.datasets[0], k)
|