poemsforaphrodite's picture
Upload folder using huggingface_hub
b72ab63 verified
raw
history blame
35.6 kB
from __future__ import annotations
import base64
import hashlib
import json
import logging
import os
import shutil
import subprocess
import tempfile
import warnings
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, Any
import aiofiles
import httpx
import numpy as np
from gradio_client import utils as client_utils
from PIL import Image, ImageOps, PngImagePlugin
from gradio import utils, wasm_utils
from gradio.data_classes import FileData, GradioModel, GradioRootModel, JsonData
from gradio.exceptions import Error
from gradio.utils import abspath, get_upload_folder, is_in_or_equal
with warnings.catch_warnings():
warnings.simplefilter("ignore") # Ignore pydub warning if ffmpeg is not installed
from pydub import AudioSegment
if wasm_utils.IS_WASM:
import pyodide.http # type: ignore
import urllib3
# NOTE: In the Wasm env, we use urllib3 to make HTTP requests. See https://github.com/gradio-app/gradio/issues/6837.
class Urllib3ResponseSyncByteStream(httpx.SyncByteStream):
def __init__(self, response) -> None:
self.response = response
def __iter__(self):
yield from self.response.stream()
class Urllib3Transport(httpx.BaseTransport):
def __init__(self):
self.pool = urllib3.PoolManager()
def handle_request(self, request: httpx.Request) -> httpx.Response:
url = str(request.url)
method = request.method
headers = dict(request.headers)
body = None if method in ["GET", "HEAD"] else request.read()
response = self.pool.request(
headers=headers,
method=method,
url=url,
body=body,
preload_content=False, # Stream the content
)
return httpx.Response(
status_code=response.status,
headers=response.headers,
stream=Urllib3ResponseSyncByteStream(response),
)
sync_transport = Urllib3Transport()
class PyodideHttpResponseAsyncByteStream(httpx.AsyncByteStream):
def __init__(self, response) -> None:
self.response = response
async def __aiter__(self):
yield await self.response.bytes()
class PyodideHttpTransport(httpx.AsyncBaseTransport):
async def handle_async_request(
self,
request: httpx.Request,
) -> httpx.Response:
url = str(request.url)
method = request.method
headers = dict(request.headers)
body = None if method in ["GET", "HEAD"] else await request.aread()
response = await pyodide.http.pyfetch(
url, method=method, headers=headers, body=body
)
return httpx.Response(
status_code=response.status,
headers=response.headers,
stream=PyodideHttpResponseAsyncByteStream(response),
)
async_transport = PyodideHttpTransport()
else:
sync_transport = None
async_transport = None
sync_client = httpx.Client(transport=sync_transport)
async_client = httpx.AsyncClient(transport=async_transport)
log = logging.getLogger(__name__)
if TYPE_CHECKING:
from gradio.blocks import Block
#########################
# GENERAL
#########################
def to_binary(x: str | dict) -> bytes:
"""Converts a base64 string or dictionary to a binary string that can be sent in a POST."""
if isinstance(x, dict):
if x.get("data"):
base64str = x["data"]
else:
base64str = client_utils.encode_url_or_file_to_base64(x["path"])
else:
base64str = x
return base64.b64decode(extract_base64_data(base64str))
def extract_base64_data(x: str) -> str:
"""Just extracts the base64 data from a general base64 string."""
return x.rsplit(",", 1)[-1]
#########################
# IMAGE PRE-PROCESSING
#########################
def encode_plot_to_base64(plt, format: str = "png"):
fmt = format or "png"
with BytesIO() as output_bytes:
plt.savefig(output_bytes, format=fmt)
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return output_base64(base64_str, fmt)
def get_pil_exif_bytes(pil_image):
if "exif" in pil_image.info:
return pil_image.info["exif"]
def get_pil_metadata(pil_image):
# Copy any text-only metadata
metadata = PngImagePlugin.PngInfo()
for key, value in pil_image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
return metadata
def encode_pil_to_bytes(pil_image, format="png"):
with BytesIO() as output_bytes:
if format == "png":
params = {"pnginfo": get_pil_metadata(pil_image)}
else:
exif = get_pil_exif_bytes(pil_image)
params = {"exif": exif} if exif else {}
pil_image.save(output_bytes, format, **params)
return output_bytes.getvalue()
def encode_pil_to_base64(pil_image, format="png"):
bytes_data = encode_pil_to_bytes(pil_image, format)
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return output_base64(base64_str, format)
def encode_array_to_base64(image_array, format="png"):
with BytesIO() as output_bytes:
pil_image = Image.fromarray(_convert(image_array, np.uint8, force_copy=False))
pil_image.save(output_bytes, format)
bytes_data = output_bytes.getvalue()
base64_str = str(base64.b64encode(bytes_data), "utf-8")
return output_base64(base64_str, format)
def output_base64(data, format=None) -> str:
return f"data:image/{format or 'png'};base64,{data}"
def hash_file(file_path: str | Path, chunk_num_blocks: int = 128) -> str:
sha1 = hashlib.sha1()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(chunk_num_blocks * sha1.block_size), b""):
sha1.update(chunk)
return sha1.hexdigest()
def hash_url(url: str) -> str:
sha1 = hashlib.sha1()
sha1.update(url.encode("utf-8"))
return sha1.hexdigest()
def hash_bytes(bytes: bytes):
sha1 = hashlib.sha1()
sha1.update(bytes)
return sha1.hexdigest()
def hash_base64(base64_encoding: str, chunk_num_blocks: int = 128) -> str:
sha1 = hashlib.sha1()
for i in range(0, len(base64_encoding), chunk_num_blocks * sha1.block_size):
data = base64_encoding[i : i + chunk_num_blocks * sha1.block_size]
sha1.update(data.encode("utf-8"))
return sha1.hexdigest()
def save_pil_to_cache(
img: Image.Image,
cache_dir: str,
name: str = "image",
format: str = "webp",
) -> str:
bytes_data = encode_pil_to_bytes(img, format)
temp_dir = Path(cache_dir) / hash_bytes(bytes_data)
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str((temp_dir / f"{name}.{format}").resolve())
(temp_dir / f"{name}.{format}").resolve().write_bytes(bytes_data)
return filename
def save_img_array_to_cache(
arr: np.ndarray, cache_dir: str, format: str = "webp"
) -> str:
pil_image = Image.fromarray(_convert(arr, np.uint8, force_copy=False))
return save_pil_to_cache(pil_image, cache_dir, format=format)
def save_audio_to_cache(
data: np.ndarray, sample_rate: int, format: str, cache_dir: str
) -> str:
temp_dir = Path(cache_dir) / hash_bytes(data.tobytes())
temp_dir.mkdir(exist_ok=True, parents=True)
filename = str((temp_dir / f"audio.{format}").resolve())
audio_to_file(sample_rate, data, filename, format=format)
return filename
def save_bytes_to_cache(data: bytes, file_name: str, cache_dir: str) -> str:
path = Path(cache_dir) / hash_bytes(data)
path.mkdir(exist_ok=True, parents=True)
path = path / Path(file_name).name
path.write_bytes(data)
return str(path.resolve())
def save_file_to_cache(file_path: str | Path, cache_dir: str) -> str:
"""Returns a temporary file path for a copy of the given file path if it does
not already exist. Otherwise returns the path to the existing temp file."""
temp_dir = hash_file(file_path)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = client_utils.strip_invalid_filename_characters(Path(file_path).name)
full_temp_file_path = str(abspath(temp_dir / name))
if not Path(full_temp_file_path).exists():
shutil.copy2(file_path, full_temp_file_path)
return full_temp_file_path
def save_url_to_cache(url: str, cache_dir: str) -> str:
"""Downloads a file and makes a temporary file path for a copy if does not already
exist. Otherwise returns the path to the existing temp file."""
temp_dir = hash_url(url)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = client_utils.strip_invalid_filename_characters(Path(url).name)
full_temp_file_path = str(abspath(temp_dir / name))
if not Path(full_temp_file_path).exists():
with sync_client.stream("GET", url, follow_redirects=True) as r, open(
full_temp_file_path, "wb"
) as f:
for chunk in r.iter_raw():
f.write(chunk)
return full_temp_file_path
async def async_save_url_to_cache(url: str, cache_dir: str) -> str:
"""Downloads a file and makes a temporary file path for a copy if does not already
exist. Otherwise returns the path to the existing temp file. Uses async httpx."""
temp_dir = hash_url(url)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = client_utils.strip_invalid_filename_characters(Path(url).name)
full_temp_file_path = str(abspath(temp_dir / name))
if not Path(full_temp_file_path).exists():
async with async_client.stream("GET", url, follow_redirects=True) as response:
async with aiofiles.open(full_temp_file_path, "wb") as f:
async for chunk in response.aiter_raw():
await f.write(chunk)
return full_temp_file_path
def save_base64_to_cache(
base64_encoding: str, cache_dir: str, file_name: str | None = None
) -> str:
"""Converts a base64 encoding to a file and returns the path to the file if
the file doesn't already exist. Otherwise returns the path to the existing file.
"""
temp_dir = hash_base64(base64_encoding)
temp_dir = Path(cache_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
guess_extension = client_utils.get_extension(base64_encoding)
if file_name:
file_name = client_utils.strip_invalid_filename_characters(file_name)
elif guess_extension:
file_name = f"file.{guess_extension}"
else:
file_name = "file"
full_temp_file_path = str(abspath(temp_dir / file_name)) # type: ignore
if not Path(full_temp_file_path).exists():
data, _ = client_utils.decode_base64_to_binary(base64_encoding)
with open(full_temp_file_path, "wb") as fb:
fb.write(data)
return full_temp_file_path
def move_resource_to_block_cache(
url_or_file_path: str | Path | None, block: Block
) -> str | None:
"""This method has been replaced by Block.move_resource_to_block_cache(), but is
left here for backwards compatibility for any custom components created in Gradio 4.2.0 or earlier.
"""
return block.move_resource_to_block_cache(url_or_file_path)
def check_all_files_in_cache(data: JsonData):
def _in_cache(d: dict):
if (
(path := d.get("path", ""))
and not client_utils.is_http_url_like(path)
and not is_in_or_equal(path, get_upload_folder())
):
raise Error(
f"File {path} is not in the cache folder and cannot be accessed."
)
client_utils.traverse(data, _in_cache, client_utils.is_file_obj)
def move_files_to_cache(
data: Any,
block: Block,
postprocess: bool = False,
check_in_upload_folder=False,
keep_in_cache=False,
):
"""Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file.
Also handles the case where the file is on an external Gradio app (/proxy=...).
Runs after .postprocess() and before .preprocess().
Args:
data: The input or output data for a component. Can be a dictionary or a dataclass
block: The component whose data is being processed
postprocess: Whether its running from postprocessing
check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not).
keep_in_cache: If True, the file will not be deleted from cache when the server is shut down.
"""
def _move_to_cache(d: dict):
payload = FileData(**d)
# If the gradio app developer is returning a URL from
# postprocess, it means the component can display a URL
# without it being served from the gradio server
# This makes it so that the URL is not downloaded and speeds up event processing
if payload.url and postprocess and client_utils.is_http_url_like(payload.url):
payload.path = payload.url
elif utils.is_static_file(payload):
pass
elif not block.proxy_url:
# If the file is on a remote server, do not move it to cache.
if check_in_upload_folder and not client_utils.is_http_url_like(
payload.path
):
path = os.path.abspath(payload.path)
if not is_in_or_equal(path, get_upload_folder()):
raise ValueError(
f"File {path} is not in the upload folder and cannot be accessed."
)
if not payload.is_stream:
temp_file_path = block.move_resource_to_block_cache(payload.path)
if temp_file_path is None:
raise ValueError("Did not determine a file path for the resource.")
payload.path = temp_file_path
if keep_in_cache:
block.keep_in_cache.add(payload.path)
url_prefix = "/stream/" if payload.is_stream else "/file="
if block.proxy_url:
proxy_url = block.proxy_url.rstrip("/")
url = f"/proxy={proxy_url}{url_prefix}{payload.path}"
elif client_utils.is_http_url_like(payload.path) or payload.path.startswith(
f"{url_prefix}"
):
url = payload.path
else:
url = f"{url_prefix}{payload.path}"
payload.url = url
return payload.model_dump()
if isinstance(data, (GradioRootModel, GradioModel)):
data = data.model_dump()
return client_utils.traverse(data, _move_to_cache, client_utils.is_file_obj)
async def async_move_files_to_cache(
data: Any,
block: Block,
postprocess: bool = False,
check_in_upload_folder=False,
keep_in_cache=False,
) -> dict:
"""Move any files in `data` to cache and (optionally), adds URL prefixes (/file=...) needed to access the cached file.
Also handles the case where the file is on an external Gradio app (/proxy=...).
Runs after .postprocess() and before .preprocess().
Args:
data: The input or output data for a component. Can be a dictionary or a dataclass
block: The component whose data is being processed
postprocess: Whether its running from postprocessing
check_in_upload_folder: If True, instead of moving the file to cache, checks if the file is in already in cache (exception if not).
keep_in_cache: If True, the file will not be deleted from cache when the server is shut down.
"""
async def _move_to_cache(d: dict):
payload = FileData(**d)
# If the gradio app developer is returning a URL from
# postprocess, it means the component can display a URL
# without it being served from the gradio server
# This makes it so that the URL is not downloaded and speeds up event processing
if payload.url and postprocess and client_utils.is_http_url_like(payload.url):
payload.path = payload.url
elif utils.is_static_file(payload):
pass
elif not block.proxy_url:
# If the file is on a remote server, do not move it to cache.
if check_in_upload_folder and not client_utils.is_http_url_like(
payload.path
):
path = os.path.abspath(payload.path)
if not is_in_or_equal(path, get_upload_folder()):
raise ValueError(
f"File {path} is not in the upload folder and cannot be accessed."
)
if not payload.is_stream:
temp_file_path = await block.async_move_resource_to_block_cache(
payload.path
)
if temp_file_path is None:
raise ValueError("Did not determine a file path for the resource.")
payload.path = temp_file_path
if keep_in_cache:
block.keep_in_cache.add(payload.path)
url_prefix = "/stream/" if payload.is_stream else "/file="
if block.proxy_url:
proxy_url = block.proxy_url.rstrip("/")
url = f"/proxy={proxy_url}{url_prefix}{payload.path}"
elif client_utils.is_http_url_like(payload.path) or payload.path.startswith(
f"{url_prefix}"
):
url = payload.path
else:
url = f"{url_prefix}{payload.path}"
payload.url = url
return payload.model_dump()
if isinstance(data, (GradioRootModel, GradioModel)):
data = data.model_dump()
return await client_utils.async_traverse(
data, _move_to_cache, client_utils.is_file_obj
)
def add_root_url(data: dict | list, root_url: str, previous_root_url: str | None):
def _add_root_url(file_dict: dict):
if previous_root_url and file_dict["url"].startswith(previous_root_url):
file_dict["url"] = file_dict["url"][len(previous_root_url) :]
elif client_utils.is_http_url_like(file_dict["url"]):
return file_dict
file_dict["url"] = f'{root_url}{file_dict["url"]}'
return file_dict
return client_utils.traverse(data, _add_root_url, client_utils.is_file_obj_with_url)
def resize_and_crop(img, size, crop_type="center"):
"""
Resize and crop an image to fit the specified size.
args:
size: `(width, height)` tuple. Pass `None` for either width or height
to only crop and resize the other.
crop_type: can be 'top', 'middle' or 'bottom', depending on this
value, the image will cropped getting the 'top/left', 'middle' or
'bottom/right' of the image to fit the size.
raises:
ValueError: if an invalid `crop_type` is provided.
"""
if crop_type == "top":
center = (0, 0)
elif crop_type == "center":
center = (0.5, 0.5)
else:
raise ValueError
resize = list(size)
if size[0] is None:
resize[0] = img.size[0]
if size[1] is None:
resize[1] = img.size[1]
return ImageOps.fit(img, resize, centering=center) # type: ignore
##################
# Audio
##################
def audio_from_file(filename, crop_min=0, crop_max=100):
try:
audio = AudioSegment.from_file(filename)
except FileNotFoundError as e:
isfile = Path(filename).is_file()
msg = (
f"Cannot load audio from file: `{'ffprobe' if isfile else filename}` not found."
+ " Please install `ffmpeg` in your system to use non-WAV audio file formats"
" and make sure `ffprobe` is in your PATH."
if isfile
else ""
)
raise RuntimeError(msg) from e
if crop_min != 0 or crop_max != 100:
audio_start = len(audio) * crop_min / 100
audio_end = len(audio) * crop_max / 100
audio = audio[audio_start:audio_end]
data = np.array(audio.get_array_of_samples())
if audio.channels > 1:
data = data.reshape(-1, audio.channels)
return audio.frame_rate, data
def audio_to_file(sample_rate, data, filename, format="wav"):
if format == "wav":
data = convert_to_16_bit_wav(data)
audio = AudioSegment(
data.tobytes(),
frame_rate=sample_rate,
sample_width=data.dtype.itemsize,
channels=(1 if len(data.shape) == 1 else data.shape[1]),
)
file = audio.export(filename, format=format)
file.close() # type: ignore
def convert_to_16_bit_wav(data):
# Based on: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
warning = "Trying to convert audio automatically from {} to 16-bit int format."
if data.dtype in [np.float64, np.float32, np.float16]:
warnings.warn(warning.format(data.dtype))
data = data / np.abs(data).max()
data = data * 32767
data = data.astype(np.int16)
elif data.dtype == np.int32:
warnings.warn(warning.format(data.dtype))
data = data / 65536
data = data.astype(np.int16)
elif data.dtype == np.int16:
pass
elif data.dtype == np.uint16:
warnings.warn(warning.format(data.dtype))
data = data - 32768
data = data.astype(np.int16)
elif data.dtype == np.uint8:
warnings.warn(warning.format(data.dtype))
data = data * 257 - 32768
data = data.astype(np.int16)
elif data.dtype == np.int8:
warnings.warn(warning.format(data.dtype))
data = data * 256
data = data.astype(np.int16)
else:
raise ValueError(
"Audio data cannot be converted automatically from "
f"{data.dtype} to 16-bit int format."
)
return data
##################
# OUTPUT
##################
def _convert(image, dtype, force_copy=False, uniform=False):
"""
Adapted from: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/dtype.py#L510-L531
Convert an image to the requested data-type.
Warnings are issued in case of precision loss, or when negative values
are clipped during conversion to unsigned integer types (sign loss).
Floating point values are expected to be normalized and will be clipped
to the range [0.0, 1.0] or [-1.0, 1.0] when converting to unsigned or
signed integers respectively.
Numbers are not shifted to the negative side when converting from
unsigned to signed integer types. Negative values will be clipped when
converting to unsigned integers.
Parameters
----------
image : ndarray
Input image.
dtype : dtype
Target data-type.
force_copy : bool, optional
Force a copy of the data, irrespective of its current dtype.
uniform : bool, optional
Uniformly quantize the floating point range to the integer range.
By default (uniform=False) floating point values are scaled and
rounded to the nearest integers, which minimizes back and forth
conversion errors.
.. versionchanged :: 0.15
``_convert`` no longer warns about possible precision or sign
information loss. See discussions on these warnings at:
https://github.com/scikit-image/scikit-image/issues/2602
https://github.com/scikit-image/scikit-image/issues/543#issuecomment-208202228
https://github.com/scikit-image/scikit-image/pull/3575
References
----------
.. [1] DirectX data conversion rules.
https://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx
.. [2] Data Conversions. In "OpenGL ES 2.0 Specification v2.0.25",
pp 7-8. Khronos Group, 2010.
.. [3] Proper treatment of pixels as integers. A.W. Paeth.
In "Graphics Gems I", pp 249-256. Morgan Kaufmann, 1990.
.. [4] Dirty Pixels. J. Blinn. In "Jim Blinn's corner: Dirty Pixels",
pp 47-57. Morgan Kaufmann, 1998.
"""
dtype_range = {
bool: (False, True),
np.bool_: (False, True),
np.bool8: (False, True), # type: ignore
float: (-1, 1),
np.float_: (-1, 1),
np.float16: (-1, 1),
np.float32: (-1, 1),
np.float64: (-1, 1),
}
def _dtype_itemsize(itemsize, *dtypes):
"""Return first of `dtypes` with itemsize greater than `itemsize`
Parameters
----------
itemsize: int
The data type object element size.
Other Parameters
----------------
*dtypes:
Any Object accepted by `np.dtype` to be converted to a data
type object
Returns
-------
dtype: data type object
First of `dtypes` with itemsize greater than `itemsize`.
"""
return next(dt for dt in dtypes if np.dtype(dt).itemsize >= itemsize)
def _dtype_bits(kind, bits, itemsize=1):
"""Return dtype of `kind` that can store a `bits` wide unsigned int
Parameters:
kind: str
Data type kind.
bits: int
Desired number of bits.
itemsize: int
The data type object element size.
Returns
-------
dtype: data type object
Data type of `kind` that can store a `bits` wide unsigned int
"""
s = next(
i
for i in (itemsize,) + (2, 4, 8)
if bits < (i * 8) or (bits == (i * 8) and kind == "u")
)
return np.dtype(kind + str(s))
def _scale(a, n, m, copy=True):
"""Scale an array of unsigned/positive integers from `n` to `m` bits.
Numbers can be represented exactly only if `m` is a multiple of `n`.
Parameters
----------
a : ndarray
Input image array.
n : int
Number of bits currently used to encode the values in `a`.
m : int
Desired number of bits to encode the values in `out`.
copy : bool, optional
If True, allocates and returns new array. Otherwise, modifies
`a` in place.
Returns
-------
out : array
Output image array. Has the same kind as `a`.
"""
kind = a.dtype.kind
if n > m and a.max() < 2**m:
return a.astype(_dtype_bits(kind, m))
elif n == m:
return a.copy() if copy else a
elif n > m:
# downscale with precision loss
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.floor_divide(a, 2 ** (n - m), out=b, dtype=a.dtype, casting="unsafe")
return b
else:
a //= 2 ** (n - m)
return a
elif m % n == 0:
# exact upscale to a multiple of `n` bits
if copy:
b = np.empty(a.shape, _dtype_bits(kind, m))
np.multiply(a, (2**m - 1) // (2**n - 1), out=b, dtype=b.dtype)
return b
else:
a = a.astype(_dtype_bits(kind, m, a.dtype.itemsize), copy=False)
a *= (2**m - 1) // (2**n - 1)
return a
else:
# upscale to a multiple of `n` bits,
# then downscale with precision loss
o = (m // n + 1) * n
if copy:
b = np.empty(a.shape, _dtype_bits(kind, o))
np.multiply(a, (2**o - 1) // (2**n - 1), out=b, dtype=b.dtype)
b //= 2 ** (o - m)
return b
else:
a = a.astype(_dtype_bits(kind, o, a.dtype.itemsize), copy=False)
a *= (2**o - 1) // (2**n - 1)
a //= 2 ** (o - m)
return a
image = np.asarray(image)
dtypeobj_in = image.dtype
dtypeobj_out = np.dtype("float64") if dtype is np.floating else np.dtype(dtype)
dtype_in = dtypeobj_in.type
dtype_out = dtypeobj_out.type
kind_in = dtypeobj_in.kind
kind_out = dtypeobj_out.kind
itemsize_in = dtypeobj_in.itemsize
itemsize_out = dtypeobj_out.itemsize
# Below, we do an `issubdtype` check. Its purpose is to find out
# whether we can get away without doing any image conversion. This happens
# when:
#
# - the output and input dtypes are the same or
# - when the output is specified as a type, and the input dtype
# is a subclass of that type (e.g. `np.floating` will allow
# `float32` and `float64` arrays through)
if np.issubdtype(dtype_in, np.obj2sctype(dtype)):
if force_copy:
image = image.copy()
return image
if kind_in in "ui":
imin_in = np.iinfo(dtype_in).min
imax_in = np.iinfo(dtype_in).max
if kind_out in "ui":
imin_out = np.iinfo(dtype_out).min # type: ignore
imax_out = np.iinfo(dtype_out).max # type: ignore
# any -> binary
if kind_out == "b":
return image > dtype_in(dtype_range[dtype_in][1] / 2)
# binary -> any
if kind_in == "b":
result = image.astype(dtype_out)
if kind_out != "f":
result *= dtype_out(dtype_range[dtype_out][1])
return result
# float -> any
if kind_in == "f":
if kind_out == "f":
# float -> float
return image.astype(dtype_out)
if np.min(image) < -1.0 or np.max(image) > 1.0:
raise ValueError("Images of type float must be between -1 and 1.")
# floating point -> integer
# use float type that can represent output integer type
computation_type = _dtype_itemsize(
itemsize_out, dtype_in, np.float32, np.float64
)
if not uniform:
if kind_out == "u":
image_out = np.multiply(image, imax_out, dtype=computation_type) # type: ignore
else:
image_out = np.multiply(
image,
(imax_out - imin_out) / 2, # type: ignore
dtype=computation_type,
)
image_out -= 1.0 / 2.0
np.rint(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
elif kind_out == "u":
image_out = np.multiply(image, imax_out + 1, dtype=computation_type) # type: ignore
np.clip(image_out, 0, imax_out, out=image_out) # type: ignore
else:
image_out = np.multiply(
image,
(imax_out - imin_out + 1.0) / 2.0, # type: ignore
dtype=computation_type,
)
np.floor(image_out, out=image_out)
np.clip(image_out, imin_out, imax_out, out=image_out) # type: ignore
return image_out.astype(dtype_out)
# signed/unsigned int -> float
if kind_out == "f":
# use float type that can exactly represent input integers
computation_type = _dtype_itemsize(
itemsize_in, dtype_out, np.float32, np.float64
)
if kind_in == "u":
# using np.divide or np.multiply doesn't copy the data
# until the computation time
image = np.multiply(image, 1.0 / imax_in, dtype=computation_type) # type: ignore
# DirectX uses this conversion also for signed ints
# if imin_in:
# np.maximum(image, -1.0, out=image)
else:
image = np.add(image, 0.5, dtype=computation_type)
image *= 2 / (imax_in - imin_in) # type: ignore
return np.asarray(image, dtype_out)
# unsigned int -> signed/unsigned int
if kind_in == "u":
if kind_out == "i":
# unsigned int -> signed int
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out - 1)
return image.view(dtype_out)
else:
# unsigned int -> unsigned int
return _scale(image, 8 * itemsize_in, 8 * itemsize_out)
# signed int -> unsigned int
if kind_out == "u":
image = _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out)
result = np.empty(image.shape, dtype_out)
np.maximum(image, 0, out=result, dtype=image.dtype, casting="unsafe")
return result
# signed int -> signed int
if itemsize_in > itemsize_out:
return _scale(image, 8 * itemsize_in - 1, 8 * itemsize_out - 1)
image = image.astype(_dtype_bits("i", itemsize_out * 8))
image -= imin_in # type: ignore
image = _scale(image, 8 * itemsize_in, 8 * itemsize_out, copy=False)
image += imin_out # type: ignore
return image.astype(dtype_out)
def ffmpeg_installed() -> bool:
if wasm_utils.IS_WASM:
# TODO: Support ffmpeg in WASM
return False
return shutil.which("ffmpeg") is not None
def video_is_playable(video_filepath: str) -> bool:
"""Determines if a video is playable in the browser.
A video is playable if it has a playable container and codec.
.mp4 -> h264
.webm -> vp9
.ogg -> theora
"""
from ffmpy import FFprobe, FFRuntimeError
try:
container = Path(video_filepath).suffix.lower()
probe = FFprobe(
global_options="-show_format -show_streams -select_streams v -print_format json",
inputs={video_filepath: None},
)
output = probe.run(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
output = json.loads(output[0])
video_codec = output["streams"][0]["codec_name"]
return (container, video_codec) in [
(".mp4", "h264"),
(".ogg", "theora"),
(".webm", "vp9"),
]
# If anything goes wrong, assume the video can be played to not convert downstream
except (FFRuntimeError, IndexError, KeyError):
return True
def convert_video_to_playable_mp4(video_path: str) -> str:
"""Convert the video to mp4. If something goes wrong return the original video."""
from ffmpy import FFmpeg, FFRuntimeError
try:
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
output_path = Path(video_path).with_suffix(".mp4")
shutil.copy2(video_path, tmp_file.name)
# ffmpeg will automatically use h264 codec (playable in browser) when converting to mp4
ff = FFmpeg(
inputs={str(tmp_file.name): None},
outputs={str(output_path): None},
global_options="-y -loglevel quiet",
)
ff.run()
except FFRuntimeError as e:
print(f"Error converting video to browser-playable format {str(e)}")
output_path = video_path
finally:
# Remove temp file
os.remove(tmp_file.name) # type: ignore
return str(output_path)
def get_video_length(video_path: str | Path):
if wasm_utils.IS_WASM:
raise wasm_utils.WasmUnsupportedError(
"Video duration is not supported in the Wasm mode."
)
duration = subprocess.check_output(
[
"ffprobe",
"-i",
str(video_path),
"-show_entries",
"format=duration",
"-v",
"quiet",
"-of",
"csv={}".format("p=0"),
]
)
duration_str = duration.decode("utf-8").strip()
duration_float = float(duration_str)
return duration_float