Spaces:
Running
Running
import base64 | |
import collections | |
import io | |
import itertools | |
import logging | |
import math | |
import os | |
from functools import lru_cache | |
from typing import TYPE_CHECKING | |
import fsspec.core | |
try: | |
import ujson as json | |
except ImportError: | |
if not TYPE_CHECKING: | |
import json | |
from ..asyn import AsyncFileSystem | |
from ..callbacks import DEFAULT_CALLBACK | |
from ..core import filesystem, open, split_protocol | |
from ..utils import isfilelike, merge_offset_ranges, other_paths | |
logger = logging.getLogger("fsspec.reference") | |
class ReferenceNotReachable(RuntimeError): | |
def __init__(self, reference, target, *args): | |
super().__init__(*args) | |
self.reference = reference | |
self.target = target | |
def __str__(self): | |
return f'Reference "{self.reference}" failed to fetch target {self.target}' | |
def _first(d): | |
return list(d.values())[0] | |
def _prot_in_references(path, references): | |
ref = references.get(path) | |
if isinstance(ref, (list, tuple)): | |
return split_protocol(ref[0])[0] if ref[0] else ref[0] | |
def _protocol_groups(paths, references): | |
if isinstance(paths, str): | |
return {_prot_in_references(paths, references): [paths]} | |
out = {} | |
for path in paths: | |
protocol = _prot_in_references(path, references) | |
out.setdefault(protocol, []).append(path) | |
return out | |
class RefsValuesView(collections.abc.ValuesView): | |
def __iter__(self): | |
for val in self._mapping.zmetadata.values(): | |
yield json.dumps(val).encode() | |
yield from self._mapping._items.values() | |
for field in self._mapping.listdir(): | |
chunk_sizes = self._mapping._get_chunk_sizes(field) | |
if len(chunk_sizes) == 0: | |
yield self._mapping[field + "/0"] | |
continue | |
yield from self._mapping._generate_all_records(field) | |
class RefsItemsView(collections.abc.ItemsView): | |
def __iter__(self): | |
return zip(self._mapping.keys(), self._mapping.values()) | |
def ravel_multi_index(idx, sizes): | |
val = 0 | |
mult = 1 | |
for i, s in zip(idx[::-1], sizes[::-1]): | |
val += i * mult | |
mult *= s | |
return val | |
class LazyReferenceMapper(collections.abc.MutableMapping): | |
"""This interface can be used to read/write references from Parquet stores. | |
It is not intended for other types of references. | |
It can be used with Kerchunk's MultiZarrToZarr method to combine | |
references into a parquet store. | |
Examples of this use-case can be found here: | |
https://fsspec.github.io/kerchunk/advanced.html?highlight=parquet#parquet-storage""" | |
# import is class level to prevent numpy dep requirement for fsspec | |
def np(self): | |
import numpy as np | |
return np | |
def pd(self): | |
import pandas as pd | |
return pd | |
def __init__( | |
self, root, fs=None, out_root=None, cache_size=128, categorical_threshold=10 | |
): | |
""" | |
This instance will be writable, storing changes in memory until full partitions | |
are accumulated or .flush() is called. | |
To create an empty lazy store, use .create() | |
Parameters | |
---------- | |
root : str | |
Root of parquet store | |
fs : fsspec.AbstractFileSystem | |
fsspec filesystem object, default is local filesystem. | |
cache_size : int, default=128 | |
Maximum size of LRU cache, where cache_size*record_size denotes | |
the total number of references that can be loaded in memory at once. | |
categorical_threshold : int | |
Encode urls as pandas.Categorical to reduce memory footprint if the ratio | |
of the number of unique urls to total number of refs for each variable | |
is greater than or equal to this number. (default 10) | |
""" | |
self.root = root | |
self.chunk_sizes = {} | |
self.out_root = out_root or self.root | |
self.cat_thresh = categorical_threshold | |
self.cache_size = cache_size | |
self.dirs = None | |
self.url = self.root + "/{field}/refs.{record}.parq" | |
# TODO: derive fs from `root` | |
self.fs = fsspec.filesystem("file") if fs is None else fs | |
def __getattr__(self, item): | |
if item in ("_items", "record_size", "zmetadata"): | |
self.setup() | |
# avoid possible recursion if setup fails somehow | |
return self.__dict__[item] | |
raise AttributeError(item) | |
def setup(self): | |
self._items = {} | |
self._items[".zmetadata"] = self.fs.cat_file( | |
"/".join([self.root, ".zmetadata"]) | |
) | |
met = json.loads(self._items[".zmetadata"]) | |
self.record_size = met["record_size"] | |
self.zmetadata = met["metadata"] | |
# Define function to open and decompress refs | |
def open_refs(field, record): | |
"""cached parquet file loader""" | |
path = self.url.format(field=field, record=record) | |
data = io.BytesIO(self.fs.cat_file(path)) | |
df = self.pd.read_parquet(data, engine="fastparquet") | |
refs = {c: df[c].values for c in df.columns} | |
return refs | |
self.open_refs = open_refs | |
def create(root, storage_options=None, fs=None, record_size=10000, **kwargs): | |
"""Make empty parquet reference set | |
First deletes the contents of the given directory, if it exists. | |
Parameters | |
---------- | |
root: str | |
Directory to contain the output; will be created | |
storage_options: dict | None | |
For making the filesystem to use for writing is fs is None | |
fs: FileSystem | None | |
Filesystem for writing | |
record_size: int | |
Number of references per parquet file | |
kwargs: passed to __init__ | |
Returns | |
------- | |
LazyReferenceMapper instance | |
""" | |
met = {"metadata": {}, "record_size": record_size} | |
if fs is None: | |
fs, root = fsspec.core.url_to_fs(root, **(storage_options or {})) | |
if fs.exists(root): | |
fs.rm(root, recursive=True) | |
fs.makedirs(root, exist_ok=True) | |
fs.pipe("/".join([root, ".zmetadata"]), json.dumps(met).encode()) | |
return LazyReferenceMapper(root, fs, **kwargs) | |
def listdir(self, basename=True): | |
"""List top-level directories""" | |
# cache me? | |
if self.dirs is None: | |
dirs = [p.split("/", 1)[0] for p in self.zmetadata] | |
self.dirs = {p for p in dirs if p and not p.startswith(".")} | |
listing = self.dirs | |
if basename: | |
listing = [os.path.basename(path) for path in listing] | |
return listing | |
def ls(self, path="", detail=True): | |
"""Shortcut file listings""" | |
if not path: | |
dirnames = self.listdir() | |
others = set( | |
[".zmetadata"] | |
+ [name for name in self.zmetadata if "/" not in name] | |
+ [name for name in self._items if "/" not in name] | |
) | |
if detail is False: | |
others.update(dirnames) | |
return sorted(others) | |
dirinfo = [ | |
{"name": name, "type": "directory", "size": 0} for name in dirnames | |
] | |
fileinfo = [ | |
{ | |
"name": name, | |
"type": "file", | |
"size": len( | |
json.dumps(self.zmetadata[name]) | |
if name in self.zmetadata | |
else self._items[name] | |
), | |
} | |
for name in others | |
] | |
return sorted(dirinfo + fileinfo, key=lambda s: s["name"]) | |
parts = path.split("/", 1) | |
if len(parts) > 1: | |
raise FileNotFoundError("Cannot list within directories right now") | |
field = parts[0] | |
others = set( | |
[name for name in self.zmetadata if name.startswith(f"{path}/")] | |
+ [name for name in self._items if name.startswith(f"{path}/")] | |
) | |
fileinfo = [ | |
{ | |
"name": name, | |
"type": "file", | |
"size": len( | |
json.dumps(self.zmetadata[name]) | |
if name in self.zmetadata | |
else self._items[name] | |
), | |
} | |
for name in others | |
] | |
keys = self._keys_in_field(field) | |
if detail is False: | |
return list(others) + list(keys) | |
recs = self._generate_all_records(field) | |
recinfo = [ | |
{"name": name, "type": "file", "size": rec[-1]} | |
for name, rec in zip(keys, recs) | |
if rec[0] # filters out path==None, deleted/missing | |
] | |
return fileinfo + recinfo | |
def _load_one_key(self, key): | |
"""Get the reference for one key | |
Returns bytes, one-element list or three-element list. | |
""" | |
if key in self._items: | |
return self._items[key] | |
elif key in self.zmetadata: | |
return json.dumps(self.zmetadata[key]).encode() | |
elif "/" not in key or self._is_meta(key): | |
raise KeyError(key) | |
field, _ = key.rsplit("/", 1) | |
record, ri, chunk_size = self._key_to_record(key) | |
maybe = self._items.get((field, record), {}).get(ri, False) | |
if maybe is None: | |
# explicitly deleted | |
raise KeyError | |
elif maybe: | |
return maybe | |
elif chunk_size == 0: | |
return b"" | |
# Chunk keys can be loaded from row group and cached in LRU cache | |
try: | |
refs = self.open_refs(field, record) | |
except (ValueError, TypeError, FileNotFoundError): | |
raise KeyError(key) | |
columns = ["path", "offset", "size", "raw"] | |
selection = [refs[c][ri] if c in refs else None for c in columns] | |
raw = selection[-1] | |
if raw is not None: | |
return raw | |
if selection[0] is None: | |
raise KeyError("This reference does not exist or has been deleted") | |
if selection[1:3] == [0, 0]: | |
# URL only | |
return selection[:1] | |
# URL, offset, size | |
return selection[:3] | |
def _key_to_record(self, key): | |
"""Details needed to construct a reference for one key""" | |
field, chunk = key.rsplit("/", 1) | |
chunk_sizes = self._get_chunk_sizes(field) | |
if len(chunk_sizes) == 0: | |
return 0, 0, 0 | |
chunk_idx = [int(c) for c in chunk.split(".")] | |
chunk_number = ravel_multi_index(chunk_idx, chunk_sizes) | |
record = chunk_number // self.record_size | |
ri = chunk_number % self.record_size | |
return record, ri, len(chunk_sizes) | |
def _get_chunk_sizes(self, field): | |
"""The number of chunks along each axis for a given field""" | |
if field not in self.chunk_sizes: | |
zarray = self.zmetadata[f"{field}/.zarray"] | |
size_ratio = [ | |
math.ceil(s / c) for s, c in zip(zarray["shape"], zarray["chunks"]) | |
] | |
self.chunk_sizes[field] = size_ratio or [1] | |
return self.chunk_sizes[field] | |
def _generate_record(self, field, record): | |
"""The references for a given parquet file of a given field""" | |
refs = self.open_refs(field, record) | |
it = iter(zip(*refs.values())) | |
if len(refs) == 3: | |
# All urls | |
return (list(t) for t in it) | |
elif len(refs) == 1: | |
# All raws | |
return refs["raw"] | |
else: | |
# Mix of urls and raws | |
return (list(t[:3]) if not t[3] else t[3] for t in it) | |
def _generate_all_records(self, field): | |
"""Load all the references within a field by iterating over the parquet files""" | |
nrec = 1 | |
for ch in self._get_chunk_sizes(field): | |
nrec *= ch | |
nrec = math.ceil(nrec / self.record_size) | |
for record in range(nrec): | |
yield from self._generate_record(field, record) | |
def values(self): | |
return RefsValuesView(self) | |
def items(self): | |
return RefsItemsView(self) | |
def __hash__(self): | |
return id(self) | |
def __getitem__(self, key): | |
return self._load_one_key(key) | |
def __setitem__(self, key, value): | |
if "/" in key and not self._is_meta(key): | |
field, chunk = key.rsplit("/", 1) | |
record, i, _ = self._key_to_record(key) | |
subdict = self._items.setdefault((field, record), {}) | |
subdict[i] = value | |
if len(subdict) == self.record_size: | |
self.write(field, record) | |
else: | |
# metadata or top-level | |
self._items[key] = value | |
new_value = json.loads( | |
value.decode() if isinstance(value, bytes) else value | |
) | |
self.zmetadata[key] = {**self.zmetadata.get(key, {}), **new_value} | |
def _is_meta(key): | |
return key.startswith(".z") or "/.z" in key | |
def __delitem__(self, key): | |
if key in self._items: | |
del self._items[key] | |
elif key in self.zmetadata: | |
del self.zmetadata[key] | |
else: | |
if "/" in key and not self._is_meta(key): | |
field, _ = key.rsplit("/", 1) | |
record, i, _ = self._key_to_record(key) | |
subdict = self._items.setdefault((field, record), {}) | |
subdict[i] = None | |
if len(subdict) == self.record_size: | |
self.write(field, record) | |
else: | |
# metadata or top-level | |
self._items[key] = None | |
def write(self, field, record, base_url=None, storage_options=None): | |
# extra requirements if writing | |
import kerchunk.df | |
import numpy as np | |
import pandas as pd | |
partition = self._items[(field, record)] | |
original = False | |
if len(partition) < self.record_size: | |
try: | |
original = self.open_refs(field, record) | |
except IOError: | |
pass | |
if original: | |
paths = original["path"] | |
offsets = original["offset"] | |
sizes = original["size"] | |
raws = original["raw"] | |
else: | |
paths = np.full(self.record_size, np.nan, dtype="O") | |
offsets = np.zeros(self.record_size, dtype="int64") | |
sizes = np.zeros(self.record_size, dtype="int64") | |
raws = np.full(self.record_size, np.nan, dtype="O") | |
for j, data in partition.items(): | |
if isinstance(data, list): | |
if ( | |
str(paths.dtype) == "category" | |
and data[0] not in paths.dtype.categories | |
): | |
paths = paths.add_categories(data[0]) | |
paths[j] = data[0] | |
if len(data) > 1: | |
offsets[j] = data[1] | |
sizes[j] = data[2] | |
elif data is None: | |
# delete | |
paths[j] = None | |
offsets[j] = 0 | |
sizes[j] = 0 | |
raws[j] = None | |
else: | |
# this is the only call into kerchunk, could remove | |
raws[j] = kerchunk.df._proc_raw(data) | |
# TODO: only save needed columns | |
df = pd.DataFrame( | |
{ | |
"path": paths, | |
"offset": offsets, | |
"size": sizes, | |
"raw": raws, | |
}, | |
copy=False, | |
) | |
if df.path.count() / (df.path.nunique() or 1) > self.cat_thresh: | |
df["path"] = df["path"].astype("category") | |
object_encoding = {"raw": "bytes", "path": "utf8"} | |
has_nulls = ["path", "raw"] | |
fn = f"{base_url or self.out_root}/{field}/refs.{record}.parq" | |
self.fs.mkdirs(f"{base_url or self.out_root}/{field}", exist_ok=True) | |
df.to_parquet( | |
fn, | |
engine="fastparquet", | |
storage_options=storage_options | |
or getattr(self.fs, "storage_options", None), | |
compression="zstd", | |
index=False, | |
stats=False, | |
object_encoding=object_encoding, | |
has_nulls=has_nulls, | |
# **kwargs, | |
) | |
partition.clear() | |
self._items.pop((field, record)) | |
def flush(self, base_url=None, storage_options=None): | |
"""Output any modified or deleted keys | |
Parameters | |
---------- | |
base_url: str | |
Location of the output | |
""" | |
# write what we have so far and clear sub chunks | |
for thing in list(self._items): | |
if isinstance(thing, tuple): | |
field, record = thing | |
self.write( | |
field, | |
record, | |
base_url=base_url, | |
storage_options=storage_options, | |
) | |
# gather .zmetadata from self._items and write that too | |
for k in list(self._items): | |
if k != ".zmetadata" and ".z" in k: | |
self.zmetadata[k] = json.loads(self._items.pop(k)) | |
met = {"metadata": self.zmetadata, "record_size": self.record_size} | |
self._items[".zmetadata"] = json.dumps(met).encode() | |
self.fs.pipe( | |
"/".join([base_url or self.out_root, ".zmetadata"]), | |
self._items[".zmetadata"], | |
) | |
# TODO: only clear those that we wrote to? | |
self.open_refs.cache_clear() | |
def __len__(self): | |
# Caveat: This counts expected references, not actual - but is fast | |
count = 0 | |
for field in self.listdir(): | |
if field.startswith("."): | |
count += 1 | |
else: | |
count += math.prod(self._get_chunk_sizes(field)) | |
count += len(self.zmetadata) # all metadata keys | |
# any other files not in reference partitions | |
count += sum(1 for _ in self._items if not isinstance(_, tuple)) | |
return count | |
def __iter__(self): | |
# Caveat: returns only existing keys, so the number of these does not | |
# match len(self) | |
metas = set(self.zmetadata) | |
metas.update(self._items) | |
for bit in metas: | |
if isinstance(bit, str): | |
yield bit | |
for field in self.listdir(): | |
for k in self._keys_in_field(field): | |
if k in self: | |
yield k | |
def __contains__(self, item): | |
try: | |
self._load_one_key(item) | |
return True | |
except KeyError: | |
return False | |
def _keys_in_field(self, field): | |
"""List key names in given field | |
Produces strings like "field/x.y" appropriate from the chunking of the array | |
""" | |
chunk_sizes = self._get_chunk_sizes(field) | |
if len(chunk_sizes) == 0: | |
yield field + "/0" | |
return | |
inds = itertools.product(*(range(i) for i in chunk_sizes)) | |
for ind in inds: | |
yield field + "/" + ".".join([str(c) for c in ind]) | |
class ReferenceFileSystem(AsyncFileSystem): | |
"""View byte ranges of some other file as a file system | |
Initial version: single file system target, which must support | |
async, and must allow start and end args in _cat_file. Later versions | |
may allow multiple arbitrary URLs for the targets. | |
This FileSystem is read-only. It is designed to be used with async | |
targets (for now). This FileSystem only allows whole-file access, no | |
``open``. We do not get original file details from the target FS. | |
Configuration is by passing a dict of references at init, or a URL to | |
a JSON file containing the same; this dict | |
can also contain concrete data for some set of paths. | |
Reference dict format: | |
{path0: bytes_data, path1: (target_url, offset, size)} | |
https://github.com/fsspec/kerchunk/blob/main/README.md | |
""" | |
protocol = "reference" | |
def __init__( | |
self, | |
fo, | |
target=None, | |
ref_storage_args=None, | |
target_protocol=None, | |
target_options=None, | |
remote_protocol=None, | |
remote_options=None, | |
fs=None, | |
template_overrides=None, | |
simple_templates=True, | |
max_gap=64_000, | |
max_block=256_000_000, | |
cache_size=128, | |
**kwargs, | |
): | |
""" | |
Parameters | |
---------- | |
fo : dict or str | |
The set of references to use for this instance, with a structure as above. | |
If str referencing a JSON file, will use fsspec.open, in conjunction | |
with target_options and target_protocol to open and parse JSON at this | |
location. If a directory, then assume references are a set of parquet | |
files to be loaded lazily. | |
target : str | |
For any references having target_url as None, this is the default file | |
target to use | |
ref_storage_args : dict | |
If references is a str, use these kwargs for loading the JSON file. | |
Deprecated: use target_options instead. | |
target_protocol : str | |
Used for loading the reference file, if it is a path. If None, protocol | |
will be derived from the given path | |
target_options : dict | |
Extra FS options for loading the reference file ``fo``, if given as a path | |
remote_protocol : str | |
The protocol of the filesystem on which the references will be evaluated | |
(unless fs is provided). If not given, will be derived from the first | |
URL that has a protocol in the templates or in the references, in that | |
order. | |
remote_options : dict | |
kwargs to go with remote_protocol | |
fs : AbstractFileSystem | dict(str, (AbstractFileSystem | dict)) | |
Directly provide a file system(s): | |
- a single filesystem instance | |
- a dict of protocol:filesystem, where each value is either a filesystem | |
instance, or a dict of kwargs that can be used to create in | |
instance for the given protocol | |
If this is given, remote_options and remote_protocol are ignored. | |
template_overrides : dict | |
Swap out any templates in the references file with these - useful for | |
testing. | |
simple_templates: bool | |
Whether templates can be processed with simple replace (True) or if | |
jinja is needed (False, much slower). All reference sets produced by | |
``kerchunk`` are simple in this sense, but the spec allows for complex. | |
max_gap, max_block: int | |
For merging multiple concurrent requests to the same remote file. | |
Neighboring byte ranges will only be merged when their | |
inter-range gap is <= ``max_gap``. Default is 64KB. Set to 0 | |
to only merge when it requires no extra bytes. Pass a negative | |
number to disable merging, appropriate for local target files. | |
Neighboring byte ranges will only be merged when the size of | |
the aggregated range is <= ``max_block``. Default is 256MB. | |
cache_size : int | |
Maximum size of LRU cache, where cache_size*record_size denotes | |
the total number of references that can be loaded in memory at once. | |
Only used for lazily loaded references. | |
kwargs : passed to parent class | |
""" | |
super().__init__(**kwargs) | |
self.target = target | |
self.template_overrides = template_overrides | |
self.simple_templates = simple_templates | |
self.templates = {} | |
self.fss = {} | |
self._dircache = {} | |
self.max_gap = max_gap | |
self.max_block = max_block | |
if isinstance(fo, str): | |
dic = dict( | |
**(ref_storage_args or target_options or {}), protocol=target_protocol | |
) | |
ref_fs, fo2 = fsspec.core.url_to_fs(fo, **dic) | |
if ref_fs.isfile(fo2): | |
# text JSON | |
with fsspec.open(fo, "rb", **dic) as f: | |
logger.info("Read reference from URL %s", fo) | |
text = json.load(f) | |
self._process_references(text, template_overrides) | |
else: | |
# Lazy parquet refs | |
logger.info("Open lazy reference dict from URL %s", fo) | |
self.references = LazyReferenceMapper( | |
fo2, | |
fs=ref_fs, | |
cache_size=cache_size, | |
) | |
else: | |
# dictionaries | |
self._process_references(fo, template_overrides) | |
if isinstance(fs, dict): | |
self.fss = { | |
k: ( | |
fsspec.filesystem(k.split(":", 1)[0], **opts) | |
if isinstance(opts, dict) | |
else opts | |
) | |
for k, opts in fs.items() | |
} | |
if None not in self.fss: | |
self.fss[None] = filesystem("file") | |
return | |
if fs is not None: | |
# single remote FS | |
remote_protocol = ( | |
fs.protocol[0] if isinstance(fs.protocol, tuple) else fs.protocol | |
) | |
self.fss[remote_protocol] = fs | |
if remote_protocol is None: | |
# get single protocol from any templates | |
for ref in self.templates.values(): | |
if callable(ref): | |
ref = ref() | |
protocol, _ = fsspec.core.split_protocol(ref) | |
if protocol and protocol not in self.fss: | |
fs = filesystem(protocol, **(remote_options or {})) | |
self.fss[protocol] = fs | |
if remote_protocol is None: | |
# get single protocol from references | |
# TODO: warning here, since this can be very expensive? | |
for ref in self.references.values(): | |
if callable(ref): | |
ref = ref() | |
if isinstance(ref, list) and ref[0]: | |
protocol, _ = fsspec.core.split_protocol(ref[0]) | |
if protocol not in self.fss: | |
fs = filesystem(protocol, **(remote_options or {})) | |
self.fss[protocol] = fs | |
# only use first remote URL | |
break | |
if remote_protocol and remote_protocol not in self.fss: | |
fs = filesystem(remote_protocol, **(remote_options or {})) | |
self.fss[remote_protocol] = fs | |
self.fss[None] = fs or filesystem("file") # default one | |
def _cat_common(self, path, start=None, end=None): | |
path = self._strip_protocol(path) | |
logger.debug(f"cat: {path}") | |
try: | |
part = self.references[path] | |
except KeyError: | |
raise FileNotFoundError(path) | |
if isinstance(part, str): | |
part = part.encode() | |
if isinstance(part, bytes): | |
logger.debug(f"Reference: {path}, type bytes") | |
if part.startswith(b"base64:"): | |
part = base64.b64decode(part[7:]) | |
return part, None, None | |
if len(part) == 1: | |
logger.debug(f"Reference: {path}, whole file => {part}") | |
url = part[0] | |
start1, end1 = start, end | |
else: | |
url, start0, size = part | |
logger.debug(f"Reference: {path} => {url}, offset {start0}, size {size}") | |
end0 = start0 + size | |
if start is not None: | |
if start >= 0: | |
start1 = start0 + start | |
else: | |
start1 = end0 + start | |
else: | |
start1 = start0 | |
if end is not None: | |
if end >= 0: | |
end1 = start0 + end | |
else: | |
end1 = end0 + end | |
else: | |
end1 = end0 | |
if url is None: | |
url = self.target | |
return url, start1, end1 | |
async def _cat_file(self, path, start=None, end=None, **kwargs): | |
part_or_url, start0, end0 = self._cat_common(path, start=start, end=end) | |
if isinstance(part_or_url, bytes): | |
return part_or_url[start:end] | |
protocol, _ = split_protocol(part_or_url) | |
try: | |
await self.fss[protocol]._cat_file(part_or_url, start=start, end=end) | |
except Exception as e: | |
raise ReferenceNotReachable(path, part_or_url) from e | |
def cat_file(self, path, start=None, end=None, **kwargs): | |
part_or_url, start0, end0 = self._cat_common(path, start=start, end=end) | |
if isinstance(part_or_url, bytes): | |
return part_or_url[start:end] | |
protocol, _ = split_protocol(part_or_url) | |
try: | |
return self.fss[protocol].cat_file(part_or_url, start=start0, end=end0) | |
except Exception as e: | |
raise ReferenceNotReachable(path, part_or_url) from e | |
def pipe_file(self, path, value, **_): | |
"""Temporarily add binary data or reference as a file""" | |
self.references[path] = value | |
async def _get_file(self, rpath, lpath, **kwargs): | |
if self.isdir(rpath): | |
return os.makedirs(lpath, exist_ok=True) | |
data = await self._cat_file(rpath) | |
with open(lpath, "wb") as f: | |
f.write(data) | |
def get_file(self, rpath, lpath, callback=DEFAULT_CALLBACK, **kwargs): | |
if self.isdir(rpath): | |
return os.makedirs(lpath, exist_ok=True) | |
data = self.cat_file(rpath, **kwargs) | |
callback.set_size(len(data)) | |
if isfilelike(lpath): | |
lpath.write(data) | |
else: | |
with open(lpath, "wb") as f: | |
f.write(data) | |
callback.absolute_update(len(data)) | |
def get(self, rpath, lpath, recursive=False, **kwargs): | |
if recursive: | |
# trigger directory build | |
self.ls("") | |
rpath = self.expand_path(rpath, recursive=recursive) | |
fs = fsspec.filesystem("file", auto_mkdir=True) | |
targets = other_paths(rpath, lpath) | |
if recursive: | |
data = self.cat([r for r in rpath if not self.isdir(r)]) | |
else: | |
data = self.cat(rpath) | |
for remote, local in zip(rpath, targets): | |
if remote in data: | |
fs.pipe_file(local, data[remote]) | |
def cat(self, path, recursive=False, on_error="raise", **kwargs): | |
if isinstance(path, str) and recursive: | |
raise NotImplementedError | |
if isinstance(path, list) and (recursive or any("*" in p for p in path)): | |
raise NotImplementedError | |
# TODO: if references is lazy, pre-fetch all paths in batch before access | |
proto_dict = _protocol_groups(path, self.references) | |
out = {} | |
for proto, paths in proto_dict.items(): | |
fs = self.fss[proto] | |
urls, starts, ends, valid_paths = [], [], [], [] | |
for p in paths: | |
# find references or label not-found. Early exit if any not | |
# found and on_error is "raise" | |
try: | |
u, s, e = self._cat_common(p) | |
except FileNotFoundError as err: | |
if on_error == "raise": | |
raise | |
if on_error != "omit": | |
out[p] = err | |
else: | |
urls.append(u) | |
starts.append(s) | |
ends.append(e) | |
valid_paths.append(p) | |
# process references into form for merging | |
urls2 = [] | |
starts2 = [] | |
ends2 = [] | |
paths2 = [] | |
whole_files = set() | |
for u, s, e, p in zip(urls, starts, ends, valid_paths): | |
if isinstance(u, bytes): | |
# data | |
out[p] = u | |
elif s is None: | |
# whole file - limits are None, None, but no further | |
# entries take for this file | |
whole_files.add(u) | |
urls2.append(u) | |
starts2.append(s) | |
ends2.append(e) | |
paths2.append(p) | |
for u, s, e, p in zip(urls, starts, ends, valid_paths): | |
# second run to account for files that are to be loaded whole | |
if s is not None and u not in whole_files: | |
urls2.append(u) | |
starts2.append(s) | |
ends2.append(e) | |
paths2.append(p) | |
# merge and fetch consolidated ranges | |
new_paths, new_starts, new_ends = merge_offset_ranges( | |
list(urls2), | |
list(starts2), | |
list(ends2), | |
sort=True, | |
max_gap=self.max_gap, | |
max_block=self.max_block, | |
) | |
bytes_out = fs.cat_ranges(new_paths, new_starts, new_ends) | |
# unbundle from merged bytes - simple approach | |
for u, s, e, p in zip(urls, starts, ends, valid_paths): | |
if p in out: | |
continue # was bytes, already handled | |
for np, ns, ne, b in zip(new_paths, new_starts, new_ends, bytes_out): | |
if np == u and (ns is None or ne is None): | |
if isinstance(b, Exception): | |
out[p] = b | |
else: | |
out[p] = b[s:e] | |
elif np == u and s >= ns and e <= ne: | |
if isinstance(b, Exception): | |
out[p] = b | |
else: | |
out[p] = b[s - ns : (e - ne) or None] | |
for k, v in out.copy().items(): | |
# these were valid references, but fetch failed, so transform exc | |
if isinstance(v, Exception) and k in self.references: | |
ex = out[k] | |
new_ex = ReferenceNotReachable(k, self.references[k]) | |
new_ex.__cause__ = ex | |
if on_error == "raise": | |
raise new_ex | |
elif on_error != "omit": | |
out[k] = new_ex | |
if len(out) == 1 and isinstance(path, str) and "*" not in path: | |
return _first(out) | |
return out | |
def _process_references(self, references, template_overrides=None): | |
vers = references.get("version", None) | |
if vers is None: | |
self._process_references0(references) | |
elif vers == 1: | |
self._process_references1(references, template_overrides=template_overrides) | |
else: | |
raise ValueError(f"Unknown reference spec version: {vers}") | |
# TODO: we make dircache by iterating over all entries, but for Spec >= 1, | |
# can replace with programmatic. Is it even needed for mapper interface? | |
def _process_references0(self, references): | |
"""Make reference dict for Spec Version 0""" | |
self.references = references | |
def _process_references1(self, references, template_overrides=None): | |
if not self.simple_templates or self.templates: | |
import jinja2 | |
self.references = {} | |
self._process_templates(references.get("templates", {})) | |
def _render_jinja(u): | |
return jinja2.Template(u).render(**self.templates) | |
for k, v in references.get("refs", {}).items(): | |
if isinstance(v, str): | |
if v.startswith("base64:"): | |
self.references[k] = base64.b64decode(v[7:]) | |
self.references[k] = v | |
elif self.templates: | |
u = v[0] | |
if "{{" in u: | |
if self.simple_templates: | |
u = ( | |
u.replace("{{", "{") | |
.replace("}}", "}") | |
.format(**self.templates) | |
) | |
else: | |
u = _render_jinja(u) | |
self.references[k] = [u] if len(v) == 1 else [u, v[1], v[2]] | |
else: | |
self.references[k] = v | |
self.references.update(self._process_gen(references.get("gen", []))) | |
def _process_templates(self, tmp): | |
self.templates = {} | |
if self.template_overrides is not None: | |
tmp.update(self.template_overrides) | |
for k, v in tmp.items(): | |
if "{{" in v: | |
import jinja2 | |
self.templates[k] = lambda temp=v, **kwargs: jinja2.Template( | |
temp | |
).render(**kwargs) | |
else: | |
self.templates[k] = v | |
def _process_gen(self, gens): | |
out = {} | |
for gen in gens: | |
dimension = { | |
k: v | |
if isinstance(v, list) | |
else range(v.get("start", 0), v["stop"], v.get("step", 1)) | |
for k, v in gen["dimensions"].items() | |
} | |
products = ( | |
dict(zip(dimension.keys(), values)) | |
for values in itertools.product(*dimension.values()) | |
) | |
for pr in products: | |
import jinja2 | |
key = jinja2.Template(gen["key"]).render(**pr, **self.templates) | |
url = jinja2.Template(gen["url"]).render(**pr, **self.templates) | |
if ("offset" in gen) and ("length" in gen): | |
offset = int( | |
jinja2.Template(gen["offset"]).render(**pr, **self.templates) | |
) | |
length = int( | |
jinja2.Template(gen["length"]).render(**pr, **self.templates) | |
) | |
out[key] = [url, offset, length] | |
elif ("offset" in gen) ^ ("length" in gen): | |
raise ValueError( | |
"Both 'offset' and 'length' are required for a " | |
"reference generator entry if either is provided." | |
) | |
else: | |
out[key] = [url] | |
return out | |
def _dircache_from_items(self): | |
self.dircache = {"": []} | |
it = self.references.items() | |
for path, part in it: | |
if isinstance(part, (bytes, str)): | |
size = len(part) | |
elif len(part) == 1: | |
size = None | |
else: | |
_, _, size = part | |
par = path.rsplit("/", 1)[0] if "/" in path else "" | |
par0 = par | |
subdirs = [par0] | |
while par0 and par0 not in self.dircache: | |
# collect parent directories | |
par0 = self._parent(par0) | |
subdirs.append(par0) | |
subdirs.reverse() | |
for parent, child in zip(subdirs, subdirs[1:]): | |
# register newly discovered directories | |
assert child not in self.dircache | |
assert parent in self.dircache | |
self.dircache[parent].append( | |
{"name": child, "type": "directory", "size": 0} | |
) | |
self.dircache[child] = [] | |
self.dircache[par].append({"name": path, "type": "file", "size": size}) | |
def _open(self, path, mode="rb", block_size=None, cache_options=None, **kwargs): | |
data = self.cat_file(path) # load whole chunk into memory | |
return io.BytesIO(data) | |
def ls(self, path, detail=True, **kwargs): | |
path = self._strip_protocol(path) | |
if isinstance(self.references, LazyReferenceMapper): | |
try: | |
return self.references.ls(path, detail) | |
except KeyError: | |
pass | |
raise FileNotFoundError(f"'{path}' is not a known key") | |
if not self.dircache: | |
self._dircache_from_items() | |
out = self._ls_from_cache(path) | |
if out is None: | |
raise FileNotFoundError(path) | |
if detail: | |
return out | |
return [o["name"] for o in out] | |
def exists(self, path, **kwargs): # overwrite auto-sync version | |
return self.isdir(path) or self.isfile(path) | |
def isdir(self, path): # overwrite auto-sync version | |
if self.dircache: | |
return path in self.dircache | |
elif isinstance(self.references, LazyReferenceMapper): | |
return path in self.references.listdir("") | |
else: | |
# this may be faster than building dircache for single calls, but | |
# by looping will be slow for many calls; could cache it? | |
return any(_.startswith(f"{path}/") for _ in self.references) | |
def isfile(self, path): # overwrite auto-sync version | |
return path in self.references | |
async def _ls(self, path, detail=True, **kwargs): # calls fast sync code | |
return self.ls(path, detail, **kwargs) | |
def find(self, path, maxdepth=None, withdirs=False, detail=False, **kwargs): | |
if withdirs: | |
return super().find( | |
path, maxdepth=maxdepth, withdirs=withdirs, detail=detail, **kwargs | |
) | |
if path: | |
path = self._strip_protocol(path) | |
r = sorted(k for k in self.references if k.startswith(path)) | |
else: | |
r = sorted(self.references) | |
if detail: | |
if not self.dircache: | |
self._dircache_from_items() | |
return {k: self._ls_from_cache(k)[0] for k in r} | |
else: | |
return r | |
def info(self, path, **kwargs): | |
out = self.references.get(path) | |
if out is not None: | |
if isinstance(out, (str, bytes)): | |
# decode base64 here | |
return {"name": path, "type": "file", "size": len(out)} | |
elif len(out) > 1: | |
return {"name": path, "type": "file", "size": out[2]} | |
else: | |
out0 = [{"name": path, "type": "file", "size": None}] | |
else: | |
out = self.ls(path, True) | |
out0 = [o for o in out if o["name"] == path] | |
if not out0: | |
return {"name": path, "type": "directory", "size": 0} | |
if out0[0]["size"] is None: | |
# if this is a whole remote file, update size using remote FS | |
prot, _ = split_protocol(self.references[path][0]) | |
out0[0]["size"] = self.fss[prot].size(self.references[path][0]) | |
return out0[0] | |
async def _info(self, path, **kwargs): # calls fast sync code | |
return self.info(path) | |
async def _rm_file(self, path, **kwargs): | |
self.references.pop( | |
path, None | |
) # ignores FileNotFound, just as well for directories | |
self.dircache.clear() # this is a bit heavy handed | |
async def _pipe_file(self, path, data): | |
# can be str or bytes | |
self.references[path] = data | |
self.dircache.clear() # this is a bit heavy handed | |
async def _put_file(self, lpath, rpath, **kwargs): | |
# puts binary | |
with open(lpath, "rb") as f: | |
self.references[rpath] = f.read() | |
self.dircache.clear() # this is a bit heavy handed | |
def save_json(self, url, **storage_options): | |
"""Write modified references into new location""" | |
out = {} | |
for k, v in self.references.items(): | |
if isinstance(v, bytes): | |
try: | |
out[k] = v.decode("ascii") | |
except UnicodeDecodeError: | |
out[k] = (b"base64:" + base64.b64encode(v)).decode() | |
else: | |
out[k] = v | |
with fsspec.open(url, "wb", **storage_options) as f: | |
f.write(json.dumps({"version": 1, "refs": out}).encode()) | |