Spaces:
Running
Running
from __future__ import annotations | |
from pathlib import Path | |
from typing import Literal | |
import numpy as np | |
import PIL.Image | |
from gradio import processing_utils | |
PIL.Image.init() # fixes https://github.com/gradio-app/gradio/issues/2843 (remove when requiring Pillow 9.4+) | |
def format_image( | |
im: PIL.Image.Image | None, | |
type: Literal["numpy", "pil", "filepath"], | |
cache_dir: str, | |
name: str = "image", | |
format: str = "webp", | |
) -> np.ndarray | PIL.Image.Image | str | None: | |
"""Helper method to format an image based on self.type""" | |
if im is None: | |
return im | |
if type == "pil": | |
return im | |
elif type == "numpy": | |
return np.array(im) | |
elif type == "filepath": | |
try: | |
path = processing_utils.save_pil_to_cache( | |
im, cache_dir=cache_dir, name=name, format=format | |
) | |
# Catch error if format is not supported by PIL | |
except (KeyError, ValueError): | |
path = processing_utils.save_pil_to_cache( | |
im, | |
cache_dir=cache_dir, | |
name=name, | |
format="png", # type: ignore | |
) | |
return path | |
else: | |
raise ValueError( | |
"Unknown type: " | |
+ str(type) | |
+ ". Please choose from: 'numpy', 'pil', 'filepath'." | |
) | |
def save_image( | |
y: np.ndarray | PIL.Image.Image | str | Path, cache_dir: str, format: str = "webp" | |
): | |
if isinstance(y, np.ndarray): | |
path = processing_utils.save_img_array_to_cache( | |
y, cache_dir=cache_dir, format=format | |
) | |
elif isinstance(y, PIL.Image.Image): | |
try: | |
path = processing_utils.save_pil_to_cache( | |
y, cache_dir=cache_dir, format=format | |
) | |
# Catch error if format is not supported by PIL | |
except (KeyError, ValueError): | |
path = processing_utils.save_pil_to_cache( | |
y, cache_dir=cache_dir, format="png" | |
) | |
elif isinstance(y, Path): | |
path = str(y) | |
elif isinstance(y, str): | |
path = y | |
else: | |
raise ValueError( | |
"Cannot process this value as an Image, it is of type: " + str(type(y)) | |
) | |
return path | |
def crop_scale(img: PIL.Image.Image, final_width: int, final_height: int): | |
original_width, original_height = img.size | |
target_aspect_ratio = final_width / final_height | |
if original_width / original_height > target_aspect_ratio: | |
crop_height = original_height | |
crop_width = crop_height * target_aspect_ratio | |
else: | |
crop_width = original_width | |
crop_height = crop_width / target_aspect_ratio | |
left = (original_width - crop_width) / 2 | |
top = (original_height - crop_height) / 2 | |
img_cropped = img.crop( | |
(int(left), int(top), int(left + crop_width), int(top + crop_height)) | |
) | |
img_resized = img_cropped.resize((final_width, final_height)) | |
return img_resized | |