Spaces:
Running
Running
File size: 22,196 Bytes
b72ab63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
"""Variation fonts interpolation models."""
__all__ = [
"normalizeValue",
"normalizeLocation",
"supportScalar",
"piecewiseLinearMap",
"VariationModel",
]
from fontTools.misc.roundTools import noRound
from .errors import VariationModelError
def nonNone(lst):
return [l for l in lst if l is not None]
def allNone(lst):
return all(l is None for l in lst)
def allEqualTo(ref, lst, mapper=None):
if mapper is None:
return all(ref == item for item in lst)
mapped = mapper(ref)
return all(mapped == mapper(item) for item in lst)
def allEqual(lst, mapper=None):
if not lst:
return True
it = iter(lst)
try:
first = next(it)
except StopIteration:
return True
return allEqualTo(first, it, mapper=mapper)
def subList(truth, lst):
assert len(truth) == len(lst)
return [l for l, t in zip(lst, truth) if t]
def normalizeValue(v, triple, extrapolate=False):
"""Normalizes value based on a min/default/max triple.
>>> normalizeValue(400, (100, 400, 900))
0.0
>>> normalizeValue(100, (100, 400, 900))
-1.0
>>> normalizeValue(650, (100, 400, 900))
0.5
"""
lower, default, upper = triple
if not (lower <= default <= upper):
raise ValueError(
f"Invalid axis values, must be minimum, default, maximum: "
f"{lower:3.3f}, {default:3.3f}, {upper:3.3f}"
)
if not extrapolate:
v = max(min(v, upper), lower)
if v == default or lower == upper:
return 0.0
if (v < default and lower != default) or (v > default and upper == default):
return (v - default) / (default - lower)
else:
assert (v > default and upper != default) or (
v < default and lower == default
), f"Ooops... v={v}, triple=({lower}, {default}, {upper})"
return (v - default) / (upper - default)
def normalizeLocation(location, axes, extrapolate=False, *, validate=False):
"""Normalizes location based on axis min/default/max values from axes.
>>> axes = {"wght": (100, 400, 900)}
>>> normalizeLocation({"wght": 400}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 100}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 900}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 650}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> axes = {"wght": (0, 0, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': 0.5}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 1.0}
>>> axes = {"wght": (0, 1000, 1000)}
>>> normalizeLocation({"wght": 0}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": -1}, axes)
{'wght': -1.0}
>>> normalizeLocation({"wght": 500}, axes)
{'wght': -0.5}
>>> normalizeLocation({"wght": 1000}, axes)
{'wght': 0.0}
>>> normalizeLocation({"wght": 1001}, axes)
{'wght': 0.0}
"""
if validate:
assert set(location.keys()) <= set(axes.keys()), set(location.keys()) - set(
axes.keys()
)
out = {}
for tag, triple in axes.items():
v = location.get(tag, triple[1])
out[tag] = normalizeValue(v, triple, extrapolate=extrapolate)
return out
def supportScalar(location, support, ot=True, extrapolate=False, axisRanges=None):
"""Returns the scalar multiplier at location, for a master
with support. If ot is True, then a peak value of zero
for support of an axis means "axis does not participate". That
is how OpenType Variation Font technology works.
If extrapolate is True, axisRanges must be a dict that maps axis
names to (axisMin, axisMax) tuples.
>>> supportScalar({}, {})
1.0
>>> supportScalar({'wght':.2}, {})
1.0
>>> supportScalar({'wght':.2}, {'wght':(0,2,3)})
0.1
>>> supportScalar({'wght':2.5}, {'wght':(0,2,4)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)}, ot=False)
0.375
>>> supportScalar({'wght':2.5, 'wdth':0}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':2.5, 'wdth':.5}, {'wght':(0,2,4), 'wdth':(-1,0,+1)})
0.75
>>> supportScalar({'wght':3}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
-1.0
>>> supportScalar({'wght':-1}, {'wght':(0,1,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
-1.0
>>> supportScalar({'wght':3}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
1.5
>>> supportScalar({'wght':-1}, {'wght':(0,2,2)}, extrapolate=True, axisRanges={'wght':(0, 2)})
-0.5
"""
if extrapolate and axisRanges is None:
raise TypeError("axisRanges must be passed when extrapolate is True")
scalar = 1.0
for axis, (lower, peak, upper) in support.items():
if ot:
# OpenType-specific case handling
if peak == 0.0:
continue
if lower > peak or peak > upper:
continue
if lower < 0.0 and upper > 0.0:
continue
v = location.get(axis, 0.0)
else:
assert axis in location
v = location[axis]
if v == peak:
continue
if extrapolate:
axisMin, axisMax = axisRanges[axis]
if v < axisMin and lower <= axisMin:
if peak <= axisMin and peak < upper:
scalar *= (v - upper) / (peak - upper)
continue
elif axisMin < peak:
scalar *= (v - lower) / (peak - lower)
continue
elif axisMax < v and axisMax <= upper:
if axisMax <= peak and lower < peak:
scalar *= (v - lower) / (peak - lower)
continue
elif peak < axisMax:
scalar *= (v - upper) / (peak - upper)
continue
if v <= lower or upper <= v:
scalar = 0.0
break
if v < peak:
scalar *= (v - lower) / (peak - lower)
else: # v > peak
scalar *= (v - upper) / (peak - upper)
return scalar
class VariationModel(object):
"""Locations must have the base master at the origin (ie. 0).
If the extrapolate argument is set to True, then values are extrapolated
outside the axis range.
>>> from pprint import pprint
>>> locations = [ \
{'wght':100}, \
{'wght':-100}, \
{'wght':-180}, \
{'wdth':+.3}, \
{'wght':+120,'wdth':.3}, \
{'wght':+120,'wdth':.2}, \
{}, \
{'wght':+180,'wdth':.3}, \
{'wght':+180}, \
]
>>> model = VariationModel(locations, axisOrder=['wght'])
>>> pprint(model.locations)
[{},
{'wght': -100},
{'wght': -180},
{'wght': 100},
{'wght': 180},
{'wdth': 0.3},
{'wdth': 0.3, 'wght': 180},
{'wdth': 0.3, 'wght': 120},
{'wdth': 0.2, 'wght': 120}]
>>> pprint(model.deltaWeights)
[{},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0},
{0: 1.0, 4: 1.0, 5: 1.0},
{0: 1.0, 3: 0.75, 4: 0.25, 5: 1.0, 6: 0.6666666666666666},
{0: 1.0,
3: 0.75,
4: 0.25,
5: 0.6666666666666667,
6: 0.4444444444444445,
7: 0.6666666666666667}]
"""
def __init__(self, locations, axisOrder=None, extrapolate=False):
if len(set(tuple(sorted(l.items())) for l in locations)) != len(locations):
raise VariationModelError("Locations must be unique.")
self.origLocations = locations
self.axisOrder = axisOrder if axisOrder is not None else []
self.extrapolate = extrapolate
self.axisRanges = self.computeAxisRanges(locations) if extrapolate else None
locations = [{k: v for k, v in loc.items() if v != 0.0} for loc in locations]
keyFunc = self.getMasterLocationsSortKeyFunc(
locations, axisOrder=self.axisOrder
)
self.locations = sorted(locations, key=keyFunc)
# Mapping from user's master order to our master order
self.mapping = [self.locations.index(l) for l in locations]
self.reverseMapping = [locations.index(l) for l in self.locations]
self._computeMasterSupports()
self._subModels = {}
def getSubModel(self, items):
"""Return a sub-model and the items that are not None.
The sub-model is necessary for working with the subset
of items when some are None.
The sub-model is cached."""
if None not in items:
return self, items
key = tuple(v is not None for v in items)
subModel = self._subModels.get(key)
if subModel is None:
subModel = VariationModel(subList(key, self.origLocations), self.axisOrder)
self._subModels[key] = subModel
return subModel, subList(key, items)
@staticmethod
def computeAxisRanges(locations):
axisRanges = {}
allAxes = {axis for loc in locations for axis in loc.keys()}
for loc in locations:
for axis in allAxes:
value = loc.get(axis, 0)
axisMin, axisMax = axisRanges.get(axis, (value, value))
axisRanges[axis] = min(value, axisMin), max(value, axisMax)
return axisRanges
@staticmethod
def getMasterLocationsSortKeyFunc(locations, axisOrder=[]):
if {} not in locations:
raise VariationModelError("Base master not found.")
axisPoints = {}
for loc in locations:
if len(loc) != 1:
continue
axis = next(iter(loc))
value = loc[axis]
if axis not in axisPoints:
axisPoints[axis] = {0.0}
assert (
value not in axisPoints[axis]
), 'Value "%s" in axisPoints["%s"] --> %s' % (value, axis, axisPoints)
axisPoints[axis].add(value)
def getKey(axisPoints, axisOrder):
def sign(v):
return -1 if v < 0 else +1 if v > 0 else 0
def key(loc):
rank = len(loc)
onPointAxes = [
axis
for axis, value in loc.items()
if axis in axisPoints and value in axisPoints[axis]
]
orderedAxes = [axis for axis in axisOrder if axis in loc]
orderedAxes.extend(
[axis for axis in sorted(loc.keys()) if axis not in axisOrder]
)
return (
rank, # First, order by increasing rank
-len(onPointAxes), # Next, by decreasing number of onPoint axes
tuple(
axisOrder.index(axis) if axis in axisOrder else 0x10000
for axis in orderedAxes
), # Next, by known axes
tuple(orderedAxes), # Next, by all axes
tuple(
sign(loc[axis]) for axis in orderedAxes
), # Next, by signs of axis values
tuple(
abs(loc[axis]) for axis in orderedAxes
), # Next, by absolute value of axis values
)
return key
ret = getKey(axisPoints, axisOrder)
return ret
def reorderMasters(self, master_list, mapping):
# For changing the master data order without
# recomputing supports and deltaWeights.
new_list = [master_list[idx] for idx in mapping]
self.origLocations = [self.origLocations[idx] for idx in mapping]
locations = [
{k: v for k, v in loc.items() if v != 0.0} for loc in self.origLocations
]
self.mapping = [self.locations.index(l) for l in locations]
self.reverseMapping = [locations.index(l) for l in self.locations]
self._subModels = {}
return new_list
def _computeMasterSupports(self):
self.supports = []
regions = self._locationsToRegions()
for i, region in enumerate(regions):
locAxes = set(region.keys())
# Walk over previous masters now
for prev_region in regions[:i]:
# Master with extra axes do not participte
if set(prev_region.keys()) != locAxes:
continue
# If it's NOT in the current box, it does not participate
relevant = True
for axis, (lower, peak, upper) in region.items():
if not (
prev_region[axis][1] == peak
or lower < prev_region[axis][1] < upper
):
relevant = False
break
if not relevant:
continue
# Split the box for new master; split in whatever direction
# that has largest range ratio.
#
# For symmetry, we actually cut across multiple axes
# if they have the largest, equal, ratio.
# https://github.com/fonttools/fonttools/commit/7ee81c8821671157968b097f3e55309a1faa511e#commitcomment-31054804
bestAxes = {}
bestRatio = -1
for axis in prev_region.keys():
val = prev_region[axis][1]
assert axis in region
lower, locV, upper = region[axis]
newLower, newUpper = lower, upper
if val < locV:
newLower = val
ratio = (val - locV) / (lower - locV)
elif locV < val:
newUpper = val
ratio = (val - locV) / (upper - locV)
else: # val == locV
# Can't split box in this direction.
continue
if ratio > bestRatio:
bestAxes = {}
bestRatio = ratio
if ratio == bestRatio:
bestAxes[axis] = (newLower, locV, newUpper)
for axis, triple in bestAxes.items():
region[axis] = triple
self.supports.append(region)
self._computeDeltaWeights()
def _locationsToRegions(self):
locations = self.locations
# Compute min/max across each axis, use it as total range.
# TODO Take this as input from outside?
minV = {}
maxV = {}
for l in locations:
for k, v in l.items():
minV[k] = min(v, minV.get(k, v))
maxV[k] = max(v, maxV.get(k, v))
regions = []
for loc in locations:
region = {}
for axis, locV in loc.items():
if locV > 0:
region[axis] = (0, locV, maxV[axis])
else:
region[axis] = (minV[axis], locV, 0)
regions.append(region)
return regions
def _computeDeltaWeights(self):
self.deltaWeights = []
for i, loc in enumerate(self.locations):
deltaWeight = {}
# Walk over previous masters now, populate deltaWeight
for j, support in enumerate(self.supports[:i]):
scalar = supportScalar(loc, support)
if scalar:
deltaWeight[j] = scalar
self.deltaWeights.append(deltaWeight)
def getDeltas(self, masterValues, *, round=noRound):
assert len(masterValues) == len(self.deltaWeights), (
len(masterValues),
len(self.deltaWeights),
)
mapping = self.reverseMapping
out = []
for i, weights in enumerate(self.deltaWeights):
delta = masterValues[mapping[i]]
for j, weight in weights.items():
if weight == 1:
delta -= out[j]
else:
delta -= out[j] * weight
out.append(round(delta))
return out
def getDeltasAndSupports(self, items, *, round=noRound):
model, items = self.getSubModel(items)
return model.getDeltas(items, round=round), model.supports
def getScalars(self, loc):
"""Return scalars for each delta, for the given location.
If interpolating many master-values at the same location,
this function allows speed up by fetching the scalars once
and using them with interpolateFromMastersAndScalars()."""
return [
supportScalar(
loc, support, extrapolate=self.extrapolate, axisRanges=self.axisRanges
)
for support in self.supports
]
def getMasterScalars(self, targetLocation):
"""Return multipliers for each master, for the given location.
If interpolating many master-values at the same location,
this function allows speed up by fetching the scalars once
and using them with interpolateFromValuesAndScalars().
Note that the scalars used in interpolateFromMastersAndScalars(),
are *not* the same as the ones returned here. They are the result
of getScalars()."""
out = self.getScalars(targetLocation)
for i, weights in reversed(list(enumerate(self.deltaWeights))):
for j, weight in weights.items():
out[j] -= out[i] * weight
out = [out[self.mapping[i]] for i in range(len(out))]
return out
@staticmethod
def interpolateFromValuesAndScalars(values, scalars):
"""Interpolate from values and scalars coefficients.
If the values are master-values, then the scalars should be
fetched from getMasterScalars().
If the values are deltas, then the scalars should be fetched
from getScalars(); in which case this is the same as
interpolateFromDeltasAndScalars().
"""
v = None
assert len(values) == len(scalars)
for value, scalar in zip(values, scalars):
if not scalar:
continue
contribution = value * scalar
if v is None:
v = contribution
else:
v += contribution
return v
@staticmethod
def interpolateFromDeltasAndScalars(deltas, scalars):
"""Interpolate from deltas and scalars fetched from getScalars()."""
return VariationModel.interpolateFromValuesAndScalars(deltas, scalars)
def interpolateFromDeltas(self, loc, deltas):
"""Interpolate from deltas, at location loc."""
scalars = self.getScalars(loc)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def interpolateFromMasters(self, loc, masterValues, *, round=noRound):
"""Interpolate from master-values, at location loc."""
scalars = self.getMasterScalars(loc)
return self.interpolateFromValuesAndScalars(masterValues, scalars)
def interpolateFromMastersAndScalars(self, masterValues, scalars, *, round=noRound):
"""Interpolate from master-values, and scalars fetched from
getScalars(), which is useful when you want to interpolate
multiple master-values with the same location."""
deltas = self.getDeltas(masterValues, round=round)
return self.interpolateFromDeltasAndScalars(deltas, scalars)
def piecewiseLinearMap(v, mapping):
keys = mapping.keys()
if not keys:
return v
if v in keys:
return mapping[v]
k = min(keys)
if v < k:
return v + mapping[k] - k
k = max(keys)
if v > k:
return v + mapping[k] - k
# Interpolate
a = max(k for k in keys if k < v)
b = min(k for k in keys if k > v)
va = mapping[a]
vb = mapping[b]
return va + (vb - va) * (v - a) / (b - a)
def main(args=None):
"""Normalize locations on a given designspace"""
from fontTools import configLogger
import argparse
parser = argparse.ArgumentParser(
"fonttools varLib.models",
description=main.__doc__,
)
parser.add_argument(
"--loglevel",
metavar="LEVEL",
default="INFO",
help="Logging level (defaults to INFO)",
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("-d", "--designspace", metavar="DESIGNSPACE", type=str)
group.add_argument(
"-l",
"--locations",
metavar="LOCATION",
nargs="+",
help="Master locations as comma-separate coordinates. One must be all zeros.",
)
args = parser.parse_args(args)
configLogger(level=args.loglevel)
from pprint import pprint
if args.designspace:
from fontTools.designspaceLib import DesignSpaceDocument
doc = DesignSpaceDocument()
doc.read(args.designspace)
locs = [s.location for s in doc.sources]
print("Original locations:")
pprint(locs)
doc.normalize()
print("Normalized locations:")
locs = [s.location for s in doc.sources]
pprint(locs)
else:
axes = [chr(c) for c in range(ord("A"), ord("Z") + 1)]
locs = [
dict(zip(axes, (float(v) for v in s.split(",")))) for s in args.locations
]
model = VariationModel(locs)
print("Sorted locations:")
pprint(model.locations)
print("Supports:")
pprint(model.supports)
if __name__ == "__main__":
import doctest, sys
if len(sys.argv) > 1:
sys.exit(main())
sys.exit(doctest.testmod().failed)
|