File size: 10,951 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
from fontTools.ttLib.ttGlyphSet import LerpGlyphSet
from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen
from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen
from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen
from fontTools.misc.transform import Transform
from collections import defaultdict, deque
from math import sqrt, copysign, atan2, pi
from enum import Enum
import itertools

import logging

log = logging.getLogger("fontTools.varLib.interpolatable")


class InterpolatableProblem:
    NOTHING = "nothing"
    MISSING = "missing"
    OPEN_PATH = "open_path"
    PATH_COUNT = "path_count"
    NODE_COUNT = "node_count"
    NODE_INCOMPATIBILITY = "node_incompatibility"
    CONTOUR_ORDER = "contour_order"
    WRONG_START_POINT = "wrong_start_point"
    KINK = "kink"
    UNDERWEIGHT = "underweight"
    OVERWEIGHT = "overweight"

    severity = {
        MISSING: 1,
        OPEN_PATH: 2,
        PATH_COUNT: 3,
        NODE_COUNT: 4,
        NODE_INCOMPATIBILITY: 5,
        CONTOUR_ORDER: 6,
        WRONG_START_POINT: 7,
        KINK: 8,
        UNDERWEIGHT: 9,
        OVERWEIGHT: 10,
        NOTHING: 11,
    }


def sort_problems(problems):
    """Sort problems by severity, then by glyph name, then by problem message."""
    return dict(
        sorted(
            problems.items(),
            key=lambda _: -min(
                (
                    (InterpolatableProblem.severity[p["type"]] + p.get("tolerance", 0))
                    for p in _[1]
                ),
            ),
            reverse=True,
        )
    )


def rot_list(l, k):
    """Rotate list by k items forward.  Ie. item at position 0 will be
    at position k in returned list.  Negative k is allowed."""
    return l[-k:] + l[:-k]


class PerContourPen(BasePen):
    def __init__(self, Pen, glyphset=None):
        BasePen.__init__(self, glyphset)
        self._glyphset = glyphset
        self._Pen = Pen
        self._pen = None
        self.value = []

    def _moveTo(self, p0):
        self._newItem()
        self._pen.moveTo(p0)

    def _lineTo(self, p1):
        self._pen.lineTo(p1)

    def _qCurveToOne(self, p1, p2):
        self._pen.qCurveTo(p1, p2)

    def _curveToOne(self, p1, p2, p3):
        self._pen.curveTo(p1, p2, p3)

    def _closePath(self):
        self._pen.closePath()
        self._pen = None

    def _endPath(self):
        self._pen.endPath()
        self._pen = None

    def _newItem(self):
        self._pen = pen = self._Pen()
        self.value.append(pen)


class PerContourOrComponentPen(PerContourPen):
    def addComponent(self, glyphName, transformation):
        self._newItem()
        self.value[-1].addComponent(glyphName, transformation)


class SimpleRecordingPointPen(AbstractPointPen):
    def __init__(self):
        self.value = []

    def beginPath(self, identifier=None, **kwargs):
        pass

    def endPath(self) -> None:
        pass

    def addPoint(self, pt, segmentType=None):
        self.value.append((pt, False if segmentType is None else True))


def vdiff_hypot2(v0, v1):
    s = 0
    for x0, x1 in zip(v0, v1):
        d = x1 - x0
        s += d * d
    return s


def vdiff_hypot2_complex(v0, v1):
    s = 0
    for x0, x1 in zip(v0, v1):
        d = x1 - x0
        s += d.real * d.real + d.imag * d.imag
        # This does the same but seems to be slower:
        # s += (d * d.conjugate()).real
    return s


def matching_cost(G, matching):
    return sum(G[i][j] for i, j in enumerate(matching))


def min_cost_perfect_bipartite_matching_scipy(G):
    n = len(G)
    rows, cols = linear_sum_assignment(G)
    assert (rows == list(range(n))).all()
    # Convert numpy array and integer to Python types,
    # to ensure that this is JSON-serializable.
    cols = list(int(e) for e in cols)
    return list(cols), matching_cost(G, cols)


def min_cost_perfect_bipartite_matching_munkres(G):
    n = len(G)
    cols = [None] * n
    for row, col in Munkres().compute(G):
        cols[row] = col
    return cols, matching_cost(G, cols)


def min_cost_perfect_bipartite_matching_bruteforce(G):
    n = len(G)

    if n > 6:
        raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'")

    # Otherwise just brute-force
    permutations = itertools.permutations(range(n))
    best = list(next(permutations))
    best_cost = matching_cost(G, best)
    for p in permutations:
        cost = matching_cost(G, p)
        if cost < best_cost:
            best, best_cost = list(p), cost
    return best, best_cost


try:
    from scipy.optimize import linear_sum_assignment

    min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy
except ImportError:
    try:
        from munkres import Munkres

        min_cost_perfect_bipartite_matching = (
            min_cost_perfect_bipartite_matching_munkres
        )
    except ImportError:
        min_cost_perfect_bipartite_matching = (
            min_cost_perfect_bipartite_matching_bruteforce
        )


def contour_vector_from_stats(stats):
    # Don't change the order of items here.
    # It's okay to add to the end, but otherwise, other
    # code depends on it. Search for "covariance".
    size = sqrt(abs(stats.area))
    return (
        copysign((size), stats.area),
        stats.meanX,
        stats.meanY,
        stats.stddevX * 2,
        stats.stddevY * 2,
        stats.correlation * size,
    )


def matching_for_vectors(m0, m1):
    n = len(m0)

    identity_matching = list(range(n))

    costs = [[vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0]
    (
        matching,
        matching_cost,
    ) = min_cost_perfect_bipartite_matching(costs)
    identity_cost = sum(costs[i][i] for i in range(n))
    return matching, matching_cost, identity_cost


def points_characteristic_bits(points):
    bits = 0
    for pt, b in reversed(points):
        bits = (bits << 1) | b
    return bits


_NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4


def points_complex_vector(points):
    vector = []
    if not points:
        return vector
    points = [complex(*pt) for pt, _ in points]
    n = len(points)
    assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4
    points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
    while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR:
        points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1])
    for i in range(n):
        # The weights are magic numbers.

        # The point itself
        p0 = points[i]
        vector.append(p0)

        # The vector to the next point
        p1 = points[i + 1]
        d0 = p1 - p0
        vector.append(d0 * 3)

        # The turn vector
        p2 = points[i + 2]
        d1 = p2 - p1
        vector.append(d1 - d0)

        # The angle to the next point, as a cross product;
        # Square root of, to match dimentionality of distance.
        cross = d0.real * d1.imag - d0.imag * d1.real
        cross = copysign(sqrt(abs(cross)), cross)
        vector.append(cross * 4)

    return vector


def add_isomorphisms(points, isomorphisms, reverse):
    reference_bits = points_characteristic_bits(points)
    n = len(points)

    # if points[0][0] == points[-1][0]:
    #   abort

    if reverse:
        points = points[::-1]
        bits = points_characteristic_bits(points)
    else:
        bits = reference_bits

    vector = points_complex_vector(points)

    assert len(vector) % n == 0
    mult = len(vector) // n
    mask = (1 << n) - 1

    for i in range(n):
        b = ((bits << (n - i)) & mask) | (bits >> i)
        if b == reference_bits:
            isomorphisms.append(
                (rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse)
            )


def find_parents_and_order(glyphsets, locations):
    parents = [None] + list(range(len(glyphsets) - 1))
    order = list(range(len(glyphsets)))
    if locations:
        # Order base master first
        bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values()))
        if bases:
            base = next(bases)
            logging.info("Base master index %s, location %s", base, locations[base])
        else:
            base = 0
            logging.warning("No base master location found")

        # Form a minimum spanning tree of the locations
        try:
            from scipy.sparse.csgraph import minimum_spanning_tree

            graph = [[0] * len(locations) for _ in range(len(locations))]
            axes = set()
            for l in locations:
                axes.update(l.keys())
            axes = sorted(axes)
            vectors = [tuple(l.get(k, 0) for k in axes) for l in locations]
            for i, j in itertools.combinations(range(len(locations)), 2):
                graph[i][j] = vdiff_hypot2(vectors[i], vectors[j])

            tree = minimum_spanning_tree(graph)
            rows, cols = tree.nonzero()
            graph = defaultdict(set)
            for row, col in zip(rows, cols):
                graph[row].add(col)
                graph[col].add(row)

            # Traverse graph from the base and assign parents
            parents = [None] * len(locations)
            order = []
            visited = set()
            queue = deque([base])
            while queue:
                i = queue.popleft()
                visited.add(i)
                order.append(i)
                for j in sorted(graph[i]):
                    if j not in visited:
                        parents[j] = i
                        queue.append(j)

        except ImportError:
            pass

        log.info("Parents: %s", parents)
        log.info("Order: %s", order)
    return parents, order


def transform_from_stats(stats, inverse=False):
    # https://cookierobotics.com/007/
    a = stats.varianceX
    b = stats.covariance
    c = stats.varianceY

    delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5
    lambda1 = (a + c) * 0.5 + delta  # Major eigenvalue
    lambda2 = (a + c) * 0.5 - delta  # Minor eigenvalue
    theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0)
    trans = Transform()

    if lambda2 < 0:
        # XXX This is a hack.
        # The problem is that the covariance matrix is singular.
        # This happens when the contour is a line, or a circle.
        # In that case, the covariance matrix is not a good
        # representation of the contour.
        # We should probably detect this earlier and avoid
        # computing the covariance matrix in the first place.
        # But for now, we just avoid the division by zero.
        lambda2 = 0

    if inverse:
        trans = trans.translate(-stats.meanX, -stats.meanY)
        trans = trans.rotate(-theta)
        trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2))
    else:
        trans = trans.scale(sqrt(lambda1), sqrt(lambda2))
        trans = trans.rotate(theta)
        trans = trans.translate(stats.meanX, stats.meanY)

    return trans