File size: 7,529 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
95831e8
 
 
4c58375
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c070ea
b72ab63
 
8c070ea
 
 
b72ab63
 
8c070ea
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c070ea
 
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c070ea
b72ab63
 
 
 
 
8c070ea
b72ab63
 
 
 
 
 
 
 
 
 
 
 
8c070ea
b72ab63
 
aaaa123
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import torch
import argparse
import gradio as gr
from zipfile import ZipFile
import langid
from openvoice import se_extractor
from openvoice.api import BaseSpeakerTTS, ToneColorConverter

parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=False, help="make link public")
args = parser.parse_args()

en_ckpt_base = 'base_speakers/EN'
zh_ckpt_base = 'base_speakers/ZH'
ckpt_converter = 'converter'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)

# load models
en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

# load speaker embeddings
en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
en_source_style_se = torch.load(f'{en_ckpt_base}/en_style_se.pth').to(device)
zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)

# This online demo mainly supports English and Chinese
supported_languages = ['zh', 'en']

def predict(prompt, style, audio_file_pth):
    # initialize a empty info
    text_hint = ''

    # set agree to True by default
    agree = True

    # first detect the input language
    language_predicted = langid.classify(prompt)[0].strip()
    print(f"Detected language:{language_predicted}")

    if language_predicted not in supported_languages:
        text_hint += f"[ERROR] The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}\n"
        gr.Warning(
            f"The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}"
        )

        return (
            text_hint,
            None,
            None,
        )
    
    if language_predicted == "zh":
        tts_model = zh_base_speaker_tts
        source_se = zh_source_se
        language = 'Chinese'
        if style not in ['default']:
            text_hint += f"[ERROR] The style {style} is not supported for Chinese, which should be in ['default']\n"
            gr.Warning(f"The style {style} is not supported for Chinese, which should be in ['default']")
            return (
                text_hint,
                None,
                None,
            )

    else:
        tts_model = en_base_speaker_tts
        if style == 'default':
            source_se = en_source_default_se
        else:
            source_se = en_source_style_se
        language = 'English'
        if style not in ['default', 'whispering', 'shouting', 'excited', 'cheerful', 'terrified', 'angry', 'sad', 'friendly']:
            text_hint += f"[ERROR] The style {style} is not supported for English, which should be in ['default', 'whispering', 'shouting', 'excited', 'cheerful', 'terrified', 'angry', 'sad', 'friendly']\n"
            gr.Warning(f"The style {style} is not supported for English, which should be in ['default', 'whispering', 'shouting', 'excited', 'cheerful', 'terrified', 'angry', 'sad', 'friendly']")
            return (
                text_hint,
                None,
                None,
            )

    speaker_wav = audio_file_pth

    if len(prompt) < 2:
        text_hint += f"[ERROR] Please give a longer prompt text \n"
        gr.Warning("Please give a longer prompt text")
        return (
            text_hint,
            None,
            None,
        )
    if len(prompt) > 200:
        text_hint += f"[ERROR] Text length limited to 200 characters for this demo, please try shorter text. You can clone our open-source repo and try for your usage \n"
        gr.Warning(
            "Text length limited to 200 characters for this demo, please try shorter text. You can clone our open-source repo for your usage"
        )
        return (
            text_hint,
            None,
            None,
        )
    
    # note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
    try:
        target_se, audio_name = se_extractor.get_se(speaker_wav, tone_color_converter, target_dir='processed', vad=True)
        # base_speaker = f"{output_dir}/openai_source_output.mp3"
        # source_se, audio_name = se_extractor.get_se(base_speaker, tone_color_converter, vad=True)
    except Exception as e:
        text_hint += f"[ERROR] Get target tone color error {str(e)} \n"
        gr.Warning(
            "[ERROR] Get target tone color error {str(e)} \n"
        )
        return (
            text_hint,
            None,
            None,
        )

    src_path = f'{output_dir}/tmp.wav'
    tts_model.tts(prompt, src_path, speaker=style, language=language)

    save_path = f'{output_dir}/output.wav'
    # Run the tone color converter
    encode_message = "@MyShell"
    tone_color_converter.convert(
        audio_src_path=src_path, 
        src_se=source_se, 
        tgt_se=target_se, 
        output_path=save_path,
        message=encode_message)

    text_hint += f'''Get response successfully \n'''

    return (
        text_hint,
        save_path,
        speaker_wav,
    )



title = "MyShell OpenVoice"



examples = [
    [
        "今天天气真好,我们一起出去吃饭吧。",
        'default',
        "resources/demo_speaker1.mp3",
    ],[
        "This audio is generated by open voice with a half-performance model.",
        'whispering',
        "resources/demo_speaker2.mp3",
    ],
    [
        "He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce.",
        'sad',
        "resources/demo_speaker0.mp3",
    ],
]

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Text Prompt",
                info="One or two sentences at a time is better. Up to 200 text characters.",
                value="He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce.",
            )
            style_gr = gr.Dropdown(
                label="Style",
                choices=['default', 'whispering', 'cheerful', 'terrified', 'angry', 'sad', 'friendly'],
                info="Please upload a reference audio file, it should be 1 minute long and clear.",
                max_choices=1,
                value="default",
            )
            ref_gr = gr.Audio(
                label="Reference Audio",
                
                type="filepath",
                value="resources/demo_speaker2.mp3",
            )

            tts_button = gr.Button("Send", elem_id="send-btn", visible=True)


        with gr.Column():
            out_text_gr = gr.Text(label="Info")
            audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
            ref_audio_gr = gr.Audio(label="Reference Audio Used")

            tts_button.click(predict, [input_text_gr, style_gr, ref_gr], outputs=[out_text_gr, audio_gr, ref_audio_gr])

demo.queue()  
demo.launch(debug=True, show_api=True, share=True)