Spaces:
Running
Running
File size: 26,539 Bytes
b72ab63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# This contains the main Connection class. Everything in h11 revolves around
# this.
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Type, Union
from ._events import (
ConnectionClosed,
Data,
EndOfMessage,
Event,
InformationalResponse,
Request,
Response,
)
from ._headers import get_comma_header, has_expect_100_continue, set_comma_header
from ._readers import READERS, ReadersType
from ._receivebuffer import ReceiveBuffer
from ._state import (
_SWITCH_CONNECT,
_SWITCH_UPGRADE,
CLIENT,
ConnectionState,
DONE,
ERROR,
MIGHT_SWITCH_PROTOCOL,
SEND_BODY,
SERVER,
SWITCHED_PROTOCOL,
)
from ._util import ( # Import the internal things we need
LocalProtocolError,
RemoteProtocolError,
Sentinel,
)
from ._writers import WRITERS, WritersType
# Everything in __all__ gets re-exported as part of the h11 public API.
__all__ = ["Connection", "NEED_DATA", "PAUSED"]
class NEED_DATA(Sentinel, metaclass=Sentinel):
pass
class PAUSED(Sentinel, metaclass=Sentinel):
pass
# If we ever have this much buffered without it making a complete parseable
# event, we error out. The only time we really buffer is when reading the
# request/response line + headers together, so this is effectively the limit on
# the size of that.
#
# Some precedents for defaults:
# - node.js: 80 * 1024
# - tomcat: 8 * 1024
# - IIS: 16 * 1024
# - Apache: <8 KiB per line>
DEFAULT_MAX_INCOMPLETE_EVENT_SIZE = 16 * 1024
# RFC 7230's rules for connection lifecycles:
# - If either side says they want to close the connection, then the connection
# must close.
# - HTTP/1.1 defaults to keep-alive unless someone says Connection: close
# - HTTP/1.0 defaults to close unless both sides say Connection: keep-alive
# (and even this is a mess -- e.g. if you're implementing a proxy then
# sending Connection: keep-alive is forbidden).
#
# We simplify life by simply not supporting keep-alive with HTTP/1.0 peers. So
# our rule is:
# - If someone says Connection: close, we will close
# - If someone uses HTTP/1.0, we will close.
def _keep_alive(event: Union[Request, Response]) -> bool:
connection = get_comma_header(event.headers, b"connection")
if b"close" in connection:
return False
if getattr(event, "http_version", b"1.1") < b"1.1":
return False
return True
def _body_framing(
request_method: bytes, event: Union[Request, Response]
) -> Tuple[str, Union[Tuple[()], Tuple[int]]]:
# Called when we enter SEND_BODY to figure out framing information for
# this body.
#
# These are the only two events that can trigger a SEND_BODY state:
assert type(event) in (Request, Response)
# Returns one of:
#
# ("content-length", count)
# ("chunked", ())
# ("http/1.0", ())
#
# which are (lookup key, *args) for constructing body reader/writer
# objects.
#
# Reference: https://tools.ietf.org/html/rfc7230#section-3.3.3
#
# Step 1: some responses always have an empty body, regardless of what the
# headers say.
if type(event) is Response:
if (
event.status_code in (204, 304)
or request_method == b"HEAD"
or (request_method == b"CONNECT" and 200 <= event.status_code < 300)
):
return ("content-length", (0,))
# Section 3.3.3 also lists another case -- responses with status_code
# < 200. For us these are InformationalResponses, not Responses, so
# they can't get into this function in the first place.
assert event.status_code >= 200
# Step 2: check for Transfer-Encoding (T-E beats C-L):
transfer_encodings = get_comma_header(event.headers, b"transfer-encoding")
if transfer_encodings:
assert transfer_encodings == [b"chunked"]
return ("chunked", ())
# Step 3: check for Content-Length
content_lengths = get_comma_header(event.headers, b"content-length")
if content_lengths:
return ("content-length", (int(content_lengths[0]),))
# Step 4: no applicable headers; fallback/default depends on type
if type(event) is Request:
return ("content-length", (0,))
else:
return ("http/1.0", ())
################################################################
#
# The main Connection class
#
################################################################
class Connection:
"""An object encapsulating the state of an HTTP connection.
Args:
our_role: If you're implementing a client, pass :data:`h11.CLIENT`. If
you're implementing a server, pass :data:`h11.SERVER`.
max_incomplete_event_size (int):
The maximum number of bytes we're willing to buffer of an
incomplete event. In practice this mostly sets a limit on the
maximum size of the request/response line + headers. If this is
exceeded, then :meth:`next_event` will raise
:exc:`RemoteProtocolError`.
"""
def __init__(
self,
our_role: Type[Sentinel],
max_incomplete_event_size: int = DEFAULT_MAX_INCOMPLETE_EVENT_SIZE,
) -> None:
self._max_incomplete_event_size = max_incomplete_event_size
# State and role tracking
if our_role not in (CLIENT, SERVER):
raise ValueError("expected CLIENT or SERVER, not {!r}".format(our_role))
self.our_role = our_role
self.their_role: Type[Sentinel]
if our_role is CLIENT:
self.their_role = SERVER
else:
self.their_role = CLIENT
self._cstate = ConnectionState()
# Callables for converting data->events or vice-versa given the
# current state
self._writer = self._get_io_object(self.our_role, None, WRITERS)
self._reader = self._get_io_object(self.their_role, None, READERS)
# Holds any unprocessed received data
self._receive_buffer = ReceiveBuffer()
# If this is true, then it indicates that the incoming connection was
# closed *after* the end of whatever's in self._receive_buffer:
self._receive_buffer_closed = False
# Extra bits of state that don't fit into the state machine.
#
# These two are only used to interpret framing headers for figuring
# out how to read/write response bodies. their_http_version is also
# made available as a convenient public API.
self.their_http_version: Optional[bytes] = None
self._request_method: Optional[bytes] = None
# This is pure flow-control and doesn't at all affect the set of legal
# transitions, so no need to bother ConnectionState with it:
self.client_is_waiting_for_100_continue = False
@property
def states(self) -> Dict[Type[Sentinel], Type[Sentinel]]:
"""A dictionary like::
{CLIENT: <client state>, SERVER: <server state>}
See :ref:`state-machine` for details.
"""
return dict(self._cstate.states)
@property
def our_state(self) -> Type[Sentinel]:
"""The current state of whichever role we are playing. See
:ref:`state-machine` for details.
"""
return self._cstate.states[self.our_role]
@property
def their_state(self) -> Type[Sentinel]:
"""The current state of whichever role we are NOT playing. See
:ref:`state-machine` for details.
"""
return self._cstate.states[self.their_role]
@property
def they_are_waiting_for_100_continue(self) -> bool:
return self.their_role is CLIENT and self.client_is_waiting_for_100_continue
def start_next_cycle(self) -> None:
"""Attempt to reset our connection state for a new request/response
cycle.
If both client and server are in :data:`DONE` state, then resets them
both to :data:`IDLE` state in preparation for a new request/response
cycle on this same connection. Otherwise, raises a
:exc:`LocalProtocolError`.
See :ref:`keepalive-and-pipelining`.
"""
old_states = dict(self._cstate.states)
self._cstate.start_next_cycle()
self._request_method = None
# self.their_http_version gets left alone, since it presumably lasts
# beyond a single request/response cycle
assert not self.client_is_waiting_for_100_continue
self._respond_to_state_changes(old_states)
def _process_error(self, role: Type[Sentinel]) -> None:
old_states = dict(self._cstate.states)
self._cstate.process_error(role)
self._respond_to_state_changes(old_states)
def _server_switch_event(self, event: Event) -> Optional[Type[Sentinel]]:
if type(event) is InformationalResponse and event.status_code == 101:
return _SWITCH_UPGRADE
if type(event) is Response:
if (
_SWITCH_CONNECT in self._cstate.pending_switch_proposals
and 200 <= event.status_code < 300
):
return _SWITCH_CONNECT
return None
# All events go through here
def _process_event(self, role: Type[Sentinel], event: Event) -> None:
# First, pass the event through the state machine to make sure it
# succeeds.
old_states = dict(self._cstate.states)
if role is CLIENT and type(event) is Request:
if event.method == b"CONNECT":
self._cstate.process_client_switch_proposal(_SWITCH_CONNECT)
if get_comma_header(event.headers, b"upgrade"):
self._cstate.process_client_switch_proposal(_SWITCH_UPGRADE)
server_switch_event = None
if role is SERVER:
server_switch_event = self._server_switch_event(event)
self._cstate.process_event(role, type(event), server_switch_event)
# Then perform the updates triggered by it.
if type(event) is Request:
self._request_method = event.method
if role is self.their_role and type(event) in (
Request,
Response,
InformationalResponse,
):
event = cast(Union[Request, Response, InformationalResponse], event)
self.their_http_version = event.http_version
# Keep alive handling
#
# RFC 7230 doesn't really say what one should do if Connection: close
# shows up on a 1xx InformationalResponse. I think the idea is that
# this is not supposed to happen. In any case, if it does happen, we
# ignore it.
if type(event) in (Request, Response) and not _keep_alive(
cast(Union[Request, Response], event)
):
self._cstate.process_keep_alive_disabled()
# 100-continue
if type(event) is Request and has_expect_100_continue(event):
self.client_is_waiting_for_100_continue = True
if type(event) in (InformationalResponse, Response):
self.client_is_waiting_for_100_continue = False
if role is CLIENT and type(event) in (Data, EndOfMessage):
self.client_is_waiting_for_100_continue = False
self._respond_to_state_changes(old_states, event)
def _get_io_object(
self,
role: Type[Sentinel],
event: Optional[Event],
io_dict: Union[ReadersType, WritersType],
) -> Optional[Callable[..., Any]]:
# event may be None; it's only used when entering SEND_BODY
state = self._cstate.states[role]
if state is SEND_BODY:
# Special case: the io_dict has a dict of reader/writer factories
# that depend on the request/response framing.
framing_type, args = _body_framing(
cast(bytes, self._request_method), cast(Union[Request, Response], event)
)
return io_dict[SEND_BODY][framing_type](*args) # type: ignore[index]
else:
# General case: the io_dict just has the appropriate reader/writer
# for this state
return io_dict.get((role, state)) # type: ignore[return-value]
# This must be called after any action that might have caused
# self._cstate.states to change.
def _respond_to_state_changes(
self,
old_states: Dict[Type[Sentinel], Type[Sentinel]],
event: Optional[Event] = None,
) -> None:
# Update reader/writer
if self.our_state != old_states[self.our_role]:
self._writer = self._get_io_object(self.our_role, event, WRITERS)
if self.their_state != old_states[self.their_role]:
self._reader = self._get_io_object(self.their_role, event, READERS)
@property
def trailing_data(self) -> Tuple[bytes, bool]:
"""Data that has been received, but not yet processed, represented as
a tuple with two elements, where the first is a byte-string containing
the unprocessed data itself, and the second is a bool that is True if
the receive connection was closed.
See :ref:`switching-protocols` for discussion of why you'd want this.
"""
return (bytes(self._receive_buffer), self._receive_buffer_closed)
def receive_data(self, data: bytes) -> None:
"""Add data to our internal receive buffer.
This does not actually do any processing on the data, just stores
it. To trigger processing, you have to call :meth:`next_event`.
Args:
data (:term:`bytes-like object`):
The new data that was just received.
Special case: If *data* is an empty byte-string like ``b""``,
then this indicates that the remote side has closed the
connection (end of file). Normally this is convenient, because
standard Python APIs like :meth:`file.read` or
:meth:`socket.recv` use ``b""`` to indicate end-of-file, while
other failures to read are indicated using other mechanisms
like raising :exc:`TimeoutError`. When using such an API you
can just blindly pass through whatever you get from ``read``
to :meth:`receive_data`, and everything will work.
But, if you have an API where reading an empty string is a
valid non-EOF condition, then you need to be aware of this and
make sure to check for such strings and avoid passing them to
:meth:`receive_data`.
Returns:
Nothing, but after calling this you should call :meth:`next_event`
to parse the newly received data.
Raises:
RuntimeError:
Raised if you pass an empty *data*, indicating EOF, and then
pass a non-empty *data*, indicating more data that somehow
arrived after the EOF.
(Calling ``receive_data(b"")`` multiple times is fine,
and equivalent to calling it once.)
"""
if data:
if self._receive_buffer_closed:
raise RuntimeError("received close, then received more data?")
self._receive_buffer += data
else:
self._receive_buffer_closed = True
def _extract_next_receive_event(
self,
) -> Union[Event, Type[NEED_DATA], Type[PAUSED]]:
state = self.their_state
# We don't pause immediately when they enter DONE, because even in
# DONE state we can still process a ConnectionClosed() event. But
# if we have data in our buffer, then we definitely aren't getting
# a ConnectionClosed() immediately and we need to pause.
if state is DONE and self._receive_buffer:
return PAUSED
if state is MIGHT_SWITCH_PROTOCOL or state is SWITCHED_PROTOCOL:
return PAUSED
assert self._reader is not None
event = self._reader(self._receive_buffer)
if event is None:
if not self._receive_buffer and self._receive_buffer_closed:
# In some unusual cases (basically just HTTP/1.0 bodies), EOF
# triggers an actual protocol event; in that case, we want to
# return that event, and then the state will change and we'll
# get called again to generate the actual ConnectionClosed().
if hasattr(self._reader, "read_eof"):
event = self._reader.read_eof() # type: ignore[attr-defined]
else:
event = ConnectionClosed()
if event is None:
event = NEED_DATA
return event # type: ignore[no-any-return]
def next_event(self) -> Union[Event, Type[NEED_DATA], Type[PAUSED]]:
"""Parse the next event out of our receive buffer, update our internal
state, and return it.
This is a mutating operation -- think of it like calling :func:`next`
on an iterator.
Returns:
: One of three things:
1) An event object -- see :ref:`events`.
2) The special constant :data:`NEED_DATA`, which indicates that
you need to read more data from your socket and pass it to
:meth:`receive_data` before this method will be able to return
any more events.
3) The special constant :data:`PAUSED`, which indicates that we
are not in a state where we can process incoming data (usually
because the peer has finished their part of the current
request/response cycle, and you have not yet called
:meth:`start_next_cycle`). See :ref:`flow-control` for details.
Raises:
RemoteProtocolError:
The peer has misbehaved. You should close the connection
(possibly after sending some kind of 4xx response).
Once this method returns :class:`ConnectionClosed` once, then all
subsequent calls will also return :class:`ConnectionClosed`.
If this method raises any exception besides :exc:`RemoteProtocolError`
then that's a bug -- if it happens please file a bug report!
If this method raises any exception then it also sets
:attr:`Connection.their_state` to :data:`ERROR` -- see
:ref:`error-handling` for discussion.
"""
if self.their_state is ERROR:
raise RemoteProtocolError("Can't receive data when peer state is ERROR")
try:
event = self._extract_next_receive_event()
if event not in [NEED_DATA, PAUSED]:
self._process_event(self.their_role, cast(Event, event))
if event is NEED_DATA:
if len(self._receive_buffer) > self._max_incomplete_event_size:
# 431 is "Request header fields too large" which is pretty
# much the only situation where we can get here
raise RemoteProtocolError(
"Receive buffer too long", error_status_hint=431
)
if self._receive_buffer_closed:
# We're still trying to complete some event, but that's
# never going to happen because no more data is coming
raise RemoteProtocolError("peer unexpectedly closed connection")
return event
except BaseException as exc:
self._process_error(self.their_role)
if isinstance(exc, LocalProtocolError):
exc._reraise_as_remote_protocol_error()
else:
raise
def send(self, event: Event) -> Optional[bytes]:
"""Convert a high-level event into bytes that can be sent to the peer,
while updating our internal state machine.
Args:
event: The :ref:`event <events>` to send.
Returns:
If ``type(event) is ConnectionClosed``, then returns
``None``. Otherwise, returns a :term:`bytes-like object`.
Raises:
LocalProtocolError:
Sending this event at this time would violate our
understanding of the HTTP/1.1 protocol.
If this method raises any exception then it also sets
:attr:`Connection.our_state` to :data:`ERROR` -- see
:ref:`error-handling` for discussion.
"""
data_list = self.send_with_data_passthrough(event)
if data_list is None:
return None
else:
return b"".join(data_list)
def send_with_data_passthrough(self, event: Event) -> Optional[List[bytes]]:
"""Identical to :meth:`send`, except that in situations where
:meth:`send` returns a single :term:`bytes-like object`, this instead
returns a list of them -- and when sending a :class:`Data` event, this
list is guaranteed to contain the exact object you passed in as
:attr:`Data.data`. See :ref:`sendfile` for discussion.
"""
if self.our_state is ERROR:
raise LocalProtocolError("Can't send data when our state is ERROR")
try:
if type(event) is Response:
event = self._clean_up_response_headers_for_sending(event)
# We want to call _process_event before calling the writer,
# because if someone tries to do something invalid then this will
# give a sensible error message, while our writers all just assume
# they will only receive valid events. But, _process_event might
# change self._writer. So we have to do a little dance:
writer = self._writer
self._process_event(self.our_role, event)
if type(event) is ConnectionClosed:
return None
else:
# In any situation where writer is None, process_event should
# have raised ProtocolError
assert writer is not None
data_list: List[bytes] = []
writer(event, data_list.append)
return data_list
except:
self._process_error(self.our_role)
raise
def send_failed(self) -> None:
"""Notify the state machine that we failed to send the data it gave
us.
This causes :attr:`Connection.our_state` to immediately become
:data:`ERROR` -- see :ref:`error-handling` for discussion.
"""
self._process_error(self.our_role)
# When sending a Response, we take responsibility for a few things:
#
# - Sometimes you MUST set Connection: close. We take care of those
# times. (You can also set it yourself if you want, and if you do then
# we'll respect that and close the connection at the right time. But you
# don't have to worry about that unless you want to.)
#
# - The user has to set Content-Length if they want it. Otherwise, for
# responses that have bodies (e.g. not HEAD), then we will automatically
# select the right mechanism for streaming a body of unknown length,
# which depends on depending on the peer's HTTP version.
#
# This function's *only* responsibility is making sure headers are set up
# right -- everything downstream just looks at the headers. There are no
# side channels.
def _clean_up_response_headers_for_sending(self, response: Response) -> Response:
assert type(response) is Response
headers = response.headers
need_close = False
# HEAD requests need some special handling: they always act like they
# have Content-Length: 0, and that's how _body_framing treats
# them. But their headers are supposed to match what we would send if
# the request was a GET. (Technically there is one deviation allowed:
# we're allowed to leave out the framing headers -- see
# https://tools.ietf.org/html/rfc7231#section-4.3.2 . But it's just as
# easy to get them right.)
method_for_choosing_headers = cast(bytes, self._request_method)
if method_for_choosing_headers == b"HEAD":
method_for_choosing_headers = b"GET"
framing_type, _ = _body_framing(method_for_choosing_headers, response)
if framing_type in ("chunked", "http/1.0"):
# This response has a body of unknown length.
# If our peer is HTTP/1.1, we use Transfer-Encoding: chunked
# If our peer is HTTP/1.0, we use no framing headers, and close the
# connection afterwards.
#
# Make sure to clear Content-Length (in principle user could have
# set both and then we ignored Content-Length b/c
# Transfer-Encoding overwrote it -- this would be naughty of them,
# but the HTTP spec says that if our peer does this then we have
# to fix it instead of erroring out, so we'll accord the user the
# same respect).
headers = set_comma_header(headers, b"content-length", [])
if self.their_http_version is None or self.their_http_version < b"1.1":
# Either we never got a valid request and are sending back an
# error (their_http_version is None), so we assume the worst;
# or else we did get a valid HTTP/1.0 request, so we know that
# they don't understand chunked encoding.
headers = set_comma_header(headers, b"transfer-encoding", [])
# This is actually redundant ATM, since currently we
# unconditionally disable keep-alive when talking to HTTP/1.0
# peers. But let's be defensive just in case we add
# Connection: keep-alive support later:
if self._request_method != b"HEAD":
need_close = True
else:
headers = set_comma_header(headers, b"transfer-encoding", [b"chunked"])
if not self._cstate.keep_alive or need_close:
# Make sure Connection: close is set
connection = set(get_comma_header(headers, b"connection"))
connection.discard(b"keep-alive")
connection.add(b"close")
headers = set_comma_header(headers, b"connection", sorted(connection))
return Response(
headers=headers,
status_code=response.status_code,
http_version=response.http_version,
reason=response.reason,
)
|