Spaces:
Running
Running
File size: 30,533 Bytes
b72ab63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 |
# -*- coding: utf-8 -*-
"""T2CharString operator specializer and generalizer.
PostScript glyph drawing operations can be expressed in multiple different
ways. For example, as well as the ``lineto`` operator, there is also a
``hlineto`` operator which draws a horizontal line, removing the need to
specify a ``dx`` coordinate, and a ``vlineto`` operator which draws a
vertical line, removing the need to specify a ``dy`` coordinate. As well
as decompiling :class:`fontTools.misc.psCharStrings.T2CharString` objects
into lists of operations, this module allows for conversion between general
and specific forms of the operation.
"""
from fontTools.cffLib import maxStackLimit
def stringToProgram(string):
if isinstance(string, str):
string = string.split()
program = []
for token in string:
try:
token = int(token)
except ValueError:
try:
token = float(token)
except ValueError:
pass
program.append(token)
return program
def programToString(program):
return " ".join(str(x) for x in program)
def programToCommands(program, getNumRegions=None):
"""Takes a T2CharString program list and returns list of commands.
Each command is a two-tuple of commandname,arg-list. The commandname might
be empty string if no commandname shall be emitted (used for glyph width,
hintmask/cntrmask argument, as well as stray arguments at the end of the
program (🤷).
'getNumRegions' may be None, or a callable object. It must return the
number of regions. 'getNumRegions' takes a single argument, vsindex. It
returns the numRegions for the vsindex.
The Charstring may or may not start with a width value. If the first
non-blend operator has an odd number of arguments, then the first argument is
a width, and is popped off. This is complicated with blend operators, as
there may be more than one before the first hint or moveto operator, and each
one reduces several arguments to just one list argument. We have to sum the
number of arguments that are not part of the blend arguments, and all the
'numBlends' values. We could instead have said that by definition, if there
is a blend operator, there is no width value, since CFF2 Charstrings don't
have width values. I discussed this with Behdad, and we are allowing for an
initial width value in this case because developers may assemble a CFF2
charstring from CFF Charstrings, which could have width values.
"""
seenWidthOp = False
vsIndex = 0
lenBlendStack = 0
lastBlendIndex = 0
commands = []
stack = []
it = iter(program)
for token in it:
if not isinstance(token, str):
stack.append(token)
continue
if token == "blend":
assert getNumRegions is not None
numSourceFonts = 1 + getNumRegions(vsIndex)
# replace the blend op args on the stack with a single list
# containing all the blend op args.
numBlends = stack[-1]
numBlendArgs = numBlends * numSourceFonts + 1
# replace first blend op by a list of the blend ops.
stack[-numBlendArgs:] = [stack[-numBlendArgs:]]
lenBlendStack += numBlends + len(stack) - 1
lastBlendIndex = len(stack)
# if a blend op exists, this is or will be a CFF2 charstring.
continue
elif token == "vsindex":
vsIndex = stack[-1]
assert type(vsIndex) is int
elif (not seenWidthOp) and token in {
"hstem",
"hstemhm",
"vstem",
"vstemhm",
"cntrmask",
"hintmask",
"hmoveto",
"vmoveto",
"rmoveto",
"endchar",
}:
seenWidthOp = True
parity = token in {"hmoveto", "vmoveto"}
if lenBlendStack:
# lenBlendStack has the number of args represented by the last blend
# arg and all the preceding args. We need to now add the number of
# args following the last blend arg.
numArgs = lenBlendStack + len(stack[lastBlendIndex:])
else:
numArgs = len(stack)
if numArgs and (numArgs % 2) ^ parity:
width = stack.pop(0)
commands.append(("", [width]))
if token in {"hintmask", "cntrmask"}:
if stack:
commands.append(("", stack))
commands.append((token, []))
commands.append(("", [next(it)]))
else:
commands.append((token, stack))
stack = []
if stack:
commands.append(("", stack))
return commands
def _flattenBlendArgs(args):
token_list = []
for arg in args:
if isinstance(arg, list):
token_list.extend(arg)
token_list.append("blend")
else:
token_list.append(arg)
return token_list
def commandsToProgram(commands):
"""Takes a commands list as returned by programToCommands() and converts
it back to a T2CharString program list."""
program = []
for op, args in commands:
if any(isinstance(arg, list) for arg in args):
args = _flattenBlendArgs(args)
program.extend(args)
if op:
program.append(op)
return program
def _everyN(el, n):
"""Group the list el into groups of size n"""
if len(el) % n != 0:
raise ValueError(el)
for i in range(0, len(el), n):
yield el[i : i + n]
class _GeneralizerDecombinerCommandsMap(object):
@staticmethod
def rmoveto(args):
if len(args) != 2:
raise ValueError(args)
yield ("rmoveto", args)
@staticmethod
def hmoveto(args):
if len(args) != 1:
raise ValueError(args)
yield ("rmoveto", [args[0], 0])
@staticmethod
def vmoveto(args):
if len(args) != 1:
raise ValueError(args)
yield ("rmoveto", [0, args[0]])
@staticmethod
def rlineto(args):
if not args:
raise ValueError(args)
for args in _everyN(args, 2):
yield ("rlineto", args)
@staticmethod
def hlineto(args):
if not args:
raise ValueError(args)
it = iter(args)
try:
while True:
yield ("rlineto", [next(it), 0])
yield ("rlineto", [0, next(it)])
except StopIteration:
pass
@staticmethod
def vlineto(args):
if not args:
raise ValueError(args)
it = iter(args)
try:
while True:
yield ("rlineto", [0, next(it)])
yield ("rlineto", [next(it), 0])
except StopIteration:
pass
@staticmethod
def rrcurveto(args):
if not args:
raise ValueError(args)
for args in _everyN(args, 6):
yield ("rrcurveto", args)
@staticmethod
def hhcurveto(args):
if len(args) < 4 or len(args) % 4 > 1:
raise ValueError(args)
if len(args) % 2 == 1:
yield ("rrcurveto", [args[1], args[0], args[2], args[3], args[4], 0])
args = args[5:]
for args in _everyN(args, 4):
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[3], 0])
@staticmethod
def vvcurveto(args):
if len(args) < 4 or len(args) % 4 > 1:
raise ValueError(args)
if len(args) % 2 == 1:
yield ("rrcurveto", [args[0], args[1], args[2], args[3], 0, args[4]])
args = args[5:]
for args in _everyN(args, 4):
yield ("rrcurveto", [0, args[0], args[1], args[2], 0, args[3]])
@staticmethod
def hvcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0, 1, 4, 5}:
raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
args = next(it)
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])
else:
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])
@staticmethod
def vhcurveto(args):
if len(args) < 4 or len(args) % 8 not in {0, 1, 4, 5}:
raise ValueError(args)
last_args = None
if len(args) % 2 == 1:
lastStraight = len(args) % 8 == 5
args, last_args = args[:-5], args[-5:]
it = _everyN(args, 4)
try:
while True:
args = next(it)
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
args = next(it)
yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
except StopIteration:
pass
if last_args:
args = last_args
if lastStraight:
yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])
else:
yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])
@staticmethod
def rcurveline(args):
if len(args) < 8 or len(args) % 6 != 2:
raise ValueError(args)
args, last_args = args[:-2], args[-2:]
for args in _everyN(args, 6):
yield ("rrcurveto", args)
yield ("rlineto", last_args)
@staticmethod
def rlinecurve(args):
if len(args) < 8 or len(args) % 2 != 0:
raise ValueError(args)
args, last_args = args[:-6], args[-6:]
for args in _everyN(args, 2):
yield ("rlineto", args)
yield ("rrcurveto", last_args)
def _convertBlendOpToArgs(blendList):
# args is list of blend op args. Since we are supporting
# recursive blend op calls, some of these args may also
# be a list of blend op args, and need to be converted before
# we convert the current list.
if any([isinstance(arg, list) for arg in blendList]):
args = [
i
for e in blendList
for i in (_convertBlendOpToArgs(e) if isinstance(e, list) else [e])
]
else:
args = blendList
# We now know that blendList contains a blend op argument list, even if
# some of the args are lists that each contain a blend op argument list.
# Convert from:
# [default font arg sequence x0,...,xn] + [delta tuple for x0] + ... + [delta tuple for xn]
# to:
# [ [x0] + [delta tuple for x0],
# ...,
# [xn] + [delta tuple for xn] ]
numBlends = args[-1]
# Can't use args.pop() when the args are being used in a nested list
# comprehension. See calling context
args = args[:-1]
numRegions = len(args) // numBlends - 1
if not (numBlends * (numRegions + 1) == len(args)):
raise ValueError(blendList)
defaultArgs = [[arg] for arg in args[:numBlends]]
deltaArgs = args[numBlends:]
numDeltaValues = len(deltaArgs)
deltaList = [
deltaArgs[i : i + numRegions] for i in range(0, numDeltaValues, numRegions)
]
blend_args = [a + b + [1] for a, b in zip(defaultArgs, deltaList)]
return blend_args
def generalizeCommands(commands, ignoreErrors=False):
result = []
mapping = _GeneralizerDecombinerCommandsMap
for op, args in commands:
# First, generalize any blend args in the arg list.
if any([isinstance(arg, list) for arg in args]):
try:
args = [
n
for arg in args
for n in (
_convertBlendOpToArgs(arg) if isinstance(arg, list) else [arg]
)
]
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append(("", args))
result.append(("", [op]))
else:
raise
func = getattr(mapping, op, None)
if not func:
result.append((op, args))
continue
try:
for command in func(args):
result.append(command)
except ValueError:
if ignoreErrors:
# Store op as data, such that consumers of commands do not have to
# deal with incorrect number of arguments.
result.append(("", args))
result.append(("", [op]))
else:
raise
return result
def generalizeProgram(program, getNumRegions=None, **kwargs):
return commandsToProgram(
generalizeCommands(programToCommands(program, getNumRegions), **kwargs)
)
def _categorizeVector(v):
"""
Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
of X and/or Y are zero, plus tuple of nonzero ones. If both are zero,
it returns a single zero still.
>>> _categorizeVector((0,0))
('0', (0,))
>>> _categorizeVector((1,0))
('h', (1,))
>>> _categorizeVector((0,2))
('v', (2,))
>>> _categorizeVector((1,2))
('r', (1, 2))
"""
if not v[0]:
if not v[1]:
return "0", v[:1]
else:
return "v", v[1:]
else:
if not v[1]:
return "h", v[:1]
else:
return "r", v
def _mergeCategories(a, b):
if a == "0":
return b
if b == "0":
return a
if a == b:
return a
return None
def _negateCategory(a):
if a == "h":
return "v"
if a == "v":
return "h"
assert a in "0r"
return a
def _convertToBlendCmds(args):
# return a list of blend commands, and
# the remaining non-blended args, if any.
num_args = len(args)
stack_use = 0
new_args = []
i = 0
while i < num_args:
arg = args[i]
if not isinstance(arg, list):
new_args.append(arg)
i += 1
stack_use += 1
else:
prev_stack_use = stack_use
# The arg is a tuple of blend values.
# These are each (master 0,delta 1..delta n, 1)
# Combine as many successive tuples as we can,
# up to the max stack limit.
num_sources = len(arg) - 1
blendlist = [arg]
i += 1
stack_use += 1 + num_sources # 1 for the num_blends arg
while (i < num_args) and isinstance(args[i], list):
blendlist.append(args[i])
i += 1
stack_use += num_sources
if stack_use + num_sources > maxStackLimit:
# if we are here, max stack is the CFF2 max stack.
# I use the CFF2 max stack limit here rather than
# the 'maxstack' chosen by the client, as the default
# maxstack may have been used unintentionally. For all
# the other operators, this just produces a little less
# optimization, but here it puts a hard (and low) limit
# on the number of source fonts that can be used.
break
# blendList now contains as many single blend tuples as can be
# combined without exceeding the CFF2 stack limit.
num_blends = len(blendlist)
# append the 'num_blends' default font values
blend_args = []
for arg in blendlist:
blend_args.append(arg[0])
for arg in blendlist:
assert arg[-1] == 1
blend_args.extend(arg[1:-1])
blend_args.append(num_blends)
new_args.append(blend_args)
stack_use = prev_stack_use + num_blends
return new_args
def _addArgs(a, b):
if isinstance(b, list):
if isinstance(a, list):
if len(a) != len(b) or a[-1] != b[-1]:
raise ValueError()
return [_addArgs(va, vb) for va, vb in zip(a[:-1], b[:-1])] + [a[-1]]
else:
a, b = b, a
if isinstance(a, list):
assert a[-1] == 1
return [_addArgs(a[0], b)] + a[1:]
return a + b
def specializeCommands(
commands,
ignoreErrors=False,
generalizeFirst=True,
preserveTopology=False,
maxstack=48,
):
# We perform several rounds of optimizations. They are carefully ordered and are:
#
# 0. Generalize commands.
# This ensures that they are in our expected simple form, with each line/curve only
# having arguments for one segment, and using the generic form (rlineto/rrcurveto).
# If caller is sure the input is in this form, they can turn off generalization to
# save time.
#
# 1. Combine successive rmoveto operations.
#
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
# We specialize into some, made-up, variants as well, which simplifies following
# passes.
#
# 3. Merge or delete redundant operations, to the extent requested.
# OpenType spec declares point numbers in CFF undefined. As such, we happily
# change topology. If client relies on point numbers (in GPOS anchors, or for
# hinting purposes(what?)) they can turn this off.
#
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
#
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
#
# 6. Resolve any remaining made-up operators into real operators.
#
# I have convinced myself that this produces optimal bytecode (except for, possibly
# one byte each time maxstack size prohibits combining.) YMMV, but you'd be wrong. :-)
# A dynamic-programming approach can do the same but would be significantly slower.
#
# 7. For any args which are blend lists, convert them to a blend command.
# 0. Generalize commands.
if generalizeFirst:
commands = generalizeCommands(commands, ignoreErrors=ignoreErrors)
else:
commands = list(commands) # Make copy since we modify in-place later.
# 1. Combine successive rmoveto operations.
for i in range(len(commands) - 1, 0, -1):
if "rmoveto" == commands[i][0] == commands[i - 1][0]:
v1, v2 = commands[i - 1][1], commands[i][1]
commands[i - 1] = ("rmoveto", [v1[0] + v2[0], v1[1] + v2[1]])
del commands[i]
# 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
#
# We, in fact, specialize into more, made-up, variants that special-case when both
# X and Y components are zero. This simplifies the following optimization passes.
# This case is rare, but OCD does not let me skip it.
#
# After this round, we will have four variants that use the following mnemonics:
#
# - 'r' for relative, ie. non-zero X and non-zero Y,
# - 'h' for horizontal, ie. zero X and non-zero Y,
# - 'v' for vertical, ie. non-zero X and zero Y,
# - '0' for zeros, ie. zero X and zero Y.
#
# The '0' pseudo-operators are not part of the spec, but help simplify the following
# optimization rounds. We resolve them at the end. So, after this, we will have four
# moveto and four lineto variants:
#
# - 0moveto, 0lineto
# - hmoveto, hlineto
# - vmoveto, vlineto
# - rmoveto, rlineto
#
# and sixteen curveto variants. For example, a '0hcurveto' operator means a curve
# dx0,dy0,dx1,dy1,dx2,dy2,dx3,dy3 where dx0, dx1, and dy3 are zero but not dx3.
# An 'rvcurveto' means dx3 is zero but not dx0,dy0,dy3.
#
# There are nine different variants of curves without the '0'. Those nine map exactly
# to the existing curve variants in the spec: rrcurveto, and the four variants hhcurveto,
# vvcurveto, hvcurveto, and vhcurveto each cover two cases, one with an odd number of
# arguments and one without. Eg. an hhcurveto with an extra argument (odd number of
# arguments) is in fact an rhcurveto. The operators in the spec are designed such that
# all four of rhcurveto, rvcurveto, hrcurveto, and vrcurveto are encodable for one curve.
#
# Of the curve types with '0', the 00curveto is equivalent to a lineto variant. The rest
# of the curve types with a 0 need to be encoded as a h or v variant. Ie. a '0' can be
# thought of a "don't care" and can be used as either an 'h' or a 'v'. As such, we always
# encode a number 0 as argument when we use a '0' variant. Later on, we can just substitute
# the '0' with either 'h' or 'v' and it works.
#
# When we get to curve splines however, things become more complicated... XXX finish this.
# There's one more complexity with splines. If one side of the spline is not horizontal or
# vertical (or zero), ie. if it's 'r', then it limits which spline types we can encode.
# Only hhcurveto and vvcurveto operators can encode a spline starting with 'r', and
# only hvcurveto and vhcurveto operators can encode a spline ending with 'r'.
# This limits our merge opportunities later.
#
for i in range(len(commands)):
op, args = commands[i]
if op in {"rmoveto", "rlineto"}:
c, args = _categorizeVector(args)
commands[i] = c + op[1:], args
continue
if op == "rrcurveto":
c1, args1 = _categorizeVector(args[:2])
c2, args2 = _categorizeVector(args[-2:])
commands[i] = c1 + c2 + "curveto", args1 + args[2:4] + args2
continue
# 3. Merge or delete redundant operations, to the extent requested.
#
# TODO
# A 0moveto that comes before all other path operations can be removed.
# though I find conflicting evidence for this.
#
# TODO
# "If hstem and vstem hints are both declared at the beginning of a
# CharString, and this sequence is followed directly by the hintmask or
# cntrmask operators, then the vstem hint operator (or, if applicable,
# the vstemhm operator) need not be included."
#
# "The sequence and form of a CFF2 CharString program may be represented as:
# {hs* vs* cm* hm* mt subpath}? {mt subpath}*"
#
# https://www.microsoft.com/typography/otspec/cff2charstr.htm#section3.1
#
# For Type2 CharStrings the sequence is:
# w? {hs* vs* cm* hm* mt subpath}? {mt subpath}* endchar"
# Some other redundancies change topology (point numbers).
if not preserveTopology:
for i in range(len(commands) - 1, -1, -1):
op, args = commands[i]
# A 00curveto is demoted to a (specialized) lineto.
if op == "00curveto":
assert len(args) == 4
c, args = _categorizeVector(args[1:3])
op = c + "lineto"
commands[i] = op, args
# and then...
# A 0lineto can be deleted.
if op == "0lineto":
del commands[i]
continue
# Merge adjacent hlineto's and vlineto's.
# In CFF2 charstrings from variable fonts, each
# arg item may be a list of blendable values, one from
# each source font.
if i and op in {"hlineto", "vlineto"} and (op == commands[i - 1][0]):
_, other_args = commands[i - 1]
assert len(args) == 1 and len(other_args) == 1
try:
new_args = [_addArgs(args[0], other_args[0])]
except ValueError:
continue
commands[i - 1] = (op, new_args)
del commands[i]
continue
# 4. Peephole optimization to revert back some of the h/v variants back into their
# original "relative" operator (rline/rrcurveto) if that saves a byte.
for i in range(1, len(commands) - 1):
op, args = commands[i]
prv, nxt = commands[i - 1][0], commands[i + 1][0]
if op in {"0lineto", "hlineto", "vlineto"} and prv == nxt == "rlineto":
assert len(args) == 1
args = [0, args[0]] if op[0] == "v" else [args[0], 0]
commands[i] = ("rlineto", args)
continue
if op[2:] == "curveto" and len(args) == 5 and prv == nxt == "rrcurveto":
assert (op[0] == "r") ^ (op[1] == "r")
if op[0] == "v":
pos = 0
elif op[0] != "r":
pos = 1
elif op[1] == "v":
pos = 4
else:
pos = 5
# Insert, while maintaining the type of args (can be tuple or list).
args = args[:pos] + type(args)((0,)) + args[pos:]
commands[i] = ("rrcurveto", args)
continue
# 5. Combine adjacent operators when possible, minding not to go over max stack size.
for i in range(len(commands) - 1, 0, -1):
op1, args1 = commands[i - 1]
op2, args2 = commands[i]
new_op = None
# Merge logic...
if {op1, op2} <= {"rlineto", "rrcurveto"}:
if op1 == op2:
new_op = op1
else:
if op2 == "rrcurveto" and len(args2) == 6:
new_op = "rlinecurve"
elif len(args2) == 2:
new_op = "rcurveline"
elif (op1, op2) in {("rlineto", "rlinecurve"), ("rrcurveto", "rcurveline")}:
new_op = op2
elif {op1, op2} == {"vlineto", "hlineto"}:
new_op = op1
elif "curveto" == op1[2:] == op2[2:]:
d0, d1 = op1[:2]
d2, d3 = op2[:2]
if d1 == "r" or d2 == "r" or d0 == d3 == "r":
continue
d = _mergeCategories(d1, d2)
if d is None:
continue
if d0 == "r":
d = _mergeCategories(d, d3)
if d is None:
continue
new_op = "r" + d + "curveto"
elif d3 == "r":
d0 = _mergeCategories(d0, _negateCategory(d))
if d0 is None:
continue
new_op = d0 + "r" + "curveto"
else:
d0 = _mergeCategories(d0, d3)
if d0 is None:
continue
new_op = d0 + d + "curveto"
# Make sure the stack depth does not exceed (maxstack - 1), so
# that subroutinizer can insert subroutine calls at any point.
if new_op and len(args1) + len(args2) < maxstack:
commands[i - 1] = (new_op, args1 + args2)
del commands[i]
# 6. Resolve any remaining made-up operators into real operators.
for i in range(len(commands)):
op, args = commands[i]
if op in {"0moveto", "0lineto"}:
commands[i] = "h" + op[1:], args
continue
if op[2:] == "curveto" and op[:2] not in {"rr", "hh", "vv", "vh", "hv"}:
op0, op1 = op[:2]
if (op0 == "r") ^ (op1 == "r"):
assert len(args) % 2 == 1
if op0 == "0":
op0 = "h"
if op1 == "0":
op1 = "h"
if op0 == "r":
op0 = op1
if op1 == "r":
op1 = _negateCategory(op0)
assert {op0, op1} <= {"h", "v"}, (op0, op1)
if len(args) % 2:
if op0 != op1: # vhcurveto / hvcurveto
if (op0 == "h") ^ (len(args) % 8 == 1):
# Swap last two args order
args = args[:-2] + args[-1:] + args[-2:-1]
else: # hhcurveto / vvcurveto
if op0 == "h": # hhcurveto
# Swap first two args order
args = args[1:2] + args[:1] + args[2:]
commands[i] = op0 + op1 + "curveto", args
continue
# 7. For any series of args which are blend lists, convert the series to a single blend arg.
for i in range(len(commands)):
op, args = commands[i]
if any(isinstance(arg, list) for arg in args):
commands[i] = op, _convertToBlendCmds(args)
return commands
def specializeProgram(program, getNumRegions=None, **kwargs):
return commandsToProgram(
specializeCommands(programToCommands(program, getNumRegions), **kwargs)
)
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
import doctest
sys.exit(doctest.testmod().failed)
import argparse
parser = argparse.ArgumentParser(
"fonttools cffLib.specializer",
description="CFF CharString generalizer/specializer",
)
parser.add_argument("program", metavar="command", nargs="*", help="Commands.")
parser.add_argument(
"--num-regions",
metavar="NumRegions",
nargs="*",
default=None,
help="Number of variable-font regions for blend opertaions.",
)
options = parser.parse_args(sys.argv[1:])
getNumRegions = (
None
if options.num_regions is None
else lambda vsIndex: int(options.num_regions[0 if vsIndex is None else vsIndex])
)
program = stringToProgram(options.program)
print("Program:")
print(programToString(program))
commands = programToCommands(program, getNumRegions)
print("Commands:")
print(commands)
program2 = commandsToProgram(commands)
print("Program from commands:")
print(programToString(program2))
assert program == program2
print("Generalized program:")
print(programToString(generalizeProgram(program, getNumRegions)))
print("Specialized program:")
print(programToString(specializeProgram(program, getNumRegions)))
|