File size: 4,175 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from dataclasses import dataclass
from typing import List, Dict, Any, NewType, Optional


# Type representing the "{selection}_store" dataset that corresponds to a
# Vega-Lite selection
Store = NewType("Store", List[Dict[str, Any]])


@dataclass(frozen=True, eq=True)
class IndexSelection:
    """
    An IndexSelection represents the state of an Altair
    point selection (as constructed by alt.selection_point())
    when neither the fields nor encodings arguments are specified.

    The value field is a list of zero-based indices into the
    selected dataset.

    Note: These indices only apply to the input DataFrame
    for charts that do not include aggregations (e.g. a scatter chart).
    """

    name: str
    value: List[int]
    store: Store

    @staticmethod
    def from_vega(name: str, signal: Optional[Dict[str, dict]], store: Store):
        """
        Construct an IndexSelection from the raw Vega signal and dataset values.

        Parameters
        ----------
        name: str
            The selection's name
        signal: dict or None
            The value of the Vega signal corresponding to the selection
        store: list
            The value of the Vega dataset corresponding to the selection.
            This dataset is named "{name}_store" in the Vega view.

        Returns
        -------
        IndexSelection
        """
        if signal is None:
            indices = []
        else:
            points = signal.get("vlPoint", {}).get("or", [])
            indices = [p["_vgsid_"] - 1 for p in points]
        return IndexSelection(name=name, value=indices, store=store)


@dataclass(frozen=True, eq=True)
class PointSelection:
    """
    A PointSelection represents the state of an Altair
    point selection (as constructed by alt.selection_point())
    when the fields or encodings arguments are specified.

    The value field is a list of dicts of the form:
        [{"dim1": 1, "dim2": "A"}, {"dim1": 2, "dim2": "BB"}]

    where "dim1" and "dim2" are dataset columns and the dict values
    correspond to the specific selected values.
    """

    name: str
    value: List[Dict[str, Any]]
    store: Store

    @staticmethod
    def from_vega(name: str, signal: Optional[Dict[str, dict]], store: Store):
        """
        Construct a PointSelection from the raw Vega signal and dataset values.

        Parameters
        ----------
        name: str
            The selection's name
        signal: dict or None
            The value of the Vega signal corresponding to the selection
        store: list
            The value of the Vega dataset corresponding to the selection.
            This dataset is named "{name}_store" in the Vega view.

        Returns
        -------
        PointSelection
        """
        if signal is None:
            points = []
        else:
            points = signal.get("vlPoint", {}).get("or", [])
        return PointSelection(name=name, value=points, store=store)


@dataclass(frozen=True, eq=True)
class IntervalSelection:
    """
    An IntervalSelection represents the state of an Altair
    interval selection (as constructed by alt.selection_interval()).

    The value field is a dict of the form:
        {"dim1": [0, 10], "dim2": ["A", "BB", "CCC"]}

    where "dim1" and "dim2" are dataset columns and the dict values
    correspond to the selected range.
    """

    name: str
    value: Dict[str, list]
    store: Store

    @staticmethod
    def from_vega(name: str, signal: Optional[Dict[str, list]], store: Store):
        """
        Construct an IntervalSelection from the raw Vega signal and dataset values.

        Parameters
        ----------
        name: str
            The selection's name
        signal: dict or None
            The value of the Vega signal corresponding to the selection
        store: list
            The value of the Vega dataset corresponding to the selection.
            This dataset is named "{name}_store" in the Vega view.

        Returns
        -------
        PointSelection
        """
        if signal is None:
            signal = {}
        return IntervalSelection(name=name, value=signal, store=store)