Spaces:
Running
Running
File size: 18,766 Bytes
b72ab63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
from __future__ import annotations
import csv
import datetime
import json
import os
import time
import uuid
from abc import ABC, abstractmethod
from collections import OrderedDict
from pathlib import Path
from typing import TYPE_CHECKING, Any
import filelock
import huggingface_hub
from gradio_client import utils as client_utils
from gradio_client.documentation import document
import gradio as gr
from gradio import utils
if TYPE_CHECKING:
from gradio.components import Component
class FlaggingCallback(ABC):
"""
An abstract class for defining the methods that any FlaggingCallback should have.
"""
@abstractmethod
def setup(self, components: list[Component], flagging_dir: str):
"""
This method should be overridden and ensure that everything is set up correctly for flag().
This method gets called once at the beginning of the Interface.launch() method.
Parameters:
components: Set of components that will provide flagged data.
flagging_dir: A string, typically containing the path to the directory where the flagging file should be stored (provided as an argument to Interface.__init__()).
"""
pass
@abstractmethod
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: str | None = None,
) -> int:
"""
This method should be overridden by the FlaggingCallback subclass and may contain optional additional arguments.
This gets called every time the <flag> button is pressed.
Parameters:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int) The total number of samples that have been flagged.
"""
pass
@document()
class SimpleCSVLogger(FlaggingCallback):
"""
A simplified implementation of the FlaggingCallback abstract class
provided for illustrative purposes. Each flagged sample (both the input and output data)
is logged to a CSV file on the machine running the gradio app.
Example:
import gradio as gr
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
flagging_callback=SimpleCSVLogger())
"""
def __init__(self):
pass
def setup(self, components: list[Component], flagging_dir: str | Path):
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: list[Any],
flag_option: str = "", # noqa: ARG002
username: str | None = None, # noqa: ARG002
) -> int:
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.csv"
csv_data = []
for component, sample in zip(self.components, flag_data):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(component.label or "")
save_dir.mkdir(exist_ok=True)
csv_data.append(
component.flag(
sample,
save_dir,
)
)
with open(log_filepath, "a", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(utils.sanitize_list_for_csv(csv_data))
with open(log_filepath) as csvfile:
line_count = len(list(csv.reader(csvfile))) - 1
return line_count
@document()
class CSVLogger(FlaggingCallback):
"""
The default implementation of the FlaggingCallback abstract class. Each flagged
sample (both the input and output data) is logged to a CSV file with headers on the machine running the gradio app.
Example:
import gradio as gr
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
flagging_callback=CSVLogger())
Guides: using-flagging
"""
def __init__(self, simplify_file_data: bool = True):
self.simplify_file_data = simplify_file_data
def setup(
self,
components: list[Component],
flagging_dir: str | Path,
):
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: str | None = None,
) -> int:
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.csv"
is_new = not Path(log_filepath).exists()
headers = [
getattr(component, "label", None) or f"component {idx}"
for idx, component in enumerate(self.components)
] + [
"flag",
"username",
"timestamp",
]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if utils.is_update(sample):
csv_data.append(str(sample))
else:
data = (
component.flag(sample, flag_dir=save_dir)
if sample is not None
else ""
)
if self.simplify_file_data:
data = utils.simplify_file_data_in_str(data)
csv_data.append(data)
csv_data.append(flag_option)
csv_data.append(username if username is not None else "")
csv_data.append(str(datetime.datetime.now()))
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
writer.writerow(utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, encoding="utf-8") as csvfile:
line_count = len(list(csv.reader(csvfile))) - 1
return line_count
@document()
class HuggingFaceDatasetSaver(FlaggingCallback):
"""
A callback that saves each flagged sample (both the input and output data) to a HuggingFace dataset.
Example:
import gradio as gr
hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "image-classification-mistakes")
def image_classifier(inp):
return {'cat': 0.3, 'dog': 0.7}
demo = gr.Interface(fn=image_classifier, inputs="image", outputs="label",
allow_flagging="manual", flagging_callback=hf_writer)
Guides: using-flagging
"""
def __init__(
self,
hf_token: str,
dataset_name: str,
private: bool = False,
info_filename: str = "dataset_info.json",
separate_dirs: bool = False,
):
"""
Parameters:
hf_token: The HuggingFace token to use to create (and write the flagged sample to) the HuggingFace dataset (defaults to the registered one).
dataset_name: The repo_id of the dataset to save the data to, e.g. "image-classifier-1" or "username/image-classifier-1".
private: Whether the dataset should be private (defaults to False).
info_filename: The name of the file to save the dataset info (defaults to "dataset_infos.json").
separate_dirs: If True, each flagged item will be saved in a separate directory. This makes the flagging more robust to concurrent editing, but may be less convenient to use.
"""
self.hf_token = hf_token
self.dataset_id = dataset_name # TODO: rename parameter (but ensure backward compatibility somehow)
self.dataset_private = private
self.info_filename = info_filename
self.separate_dirs = separate_dirs
def setup(self, components: list[Component], flagging_dir: str):
"""
Params:
flagging_dir (str): local directory where the dataset is cloned,
updated, and pushed from.
"""
# Setup dataset on the Hub
self.dataset_id = huggingface_hub.create_repo(
repo_id=self.dataset_id,
token=self.hf_token,
private=self.dataset_private,
repo_type="dataset",
exist_ok=True,
).repo_id
path_glob = "**/*.jsonl" if self.separate_dirs else "data.csv"
huggingface_hub.metadata_update(
repo_id=self.dataset_id,
repo_type="dataset",
metadata={
"configs": [
{
"config_name": "default",
"data_files": [{"split": "train", "path": path_glob}],
}
]
},
overwrite=True,
token=self.hf_token,
)
# Setup flagging dir
self.components = components
self.dataset_dir = (
Path(flagging_dir).absolute() / self.dataset_id.split("/")[-1]
)
self.dataset_dir.mkdir(parents=True, exist_ok=True)
self.infos_file = self.dataset_dir / self.info_filename
# Download remote files to local
remote_files = [self.info_filename]
if not self.separate_dirs:
# No separate dirs => means all data is in the same CSV file => download it to get its current content
remote_files.append("data.csv")
for filename in remote_files:
try:
huggingface_hub.hf_hub_download(
repo_id=self.dataset_id,
repo_type="dataset",
filename=filename,
local_dir=self.dataset_dir,
token=self.hf_token,
)
except huggingface_hub.utils.EntryNotFoundError:
pass
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: str | None = None,
) -> int:
if self.separate_dirs:
# JSONL files to support dataset preview on the Hub
unique_id = str(uuid.uuid4())
components_dir = self.dataset_dir / unique_id
data_file = components_dir / "metadata.jsonl"
path_in_repo = unique_id # upload in sub folder (safer for concurrency)
else:
# Unique CSV file
components_dir = self.dataset_dir
data_file = components_dir / "data.csv"
path_in_repo = None # upload at root level
return self._flag_in_dir(
data_file=data_file,
components_dir=components_dir,
path_in_repo=path_in_repo,
flag_data=flag_data,
flag_option=flag_option,
username=username or "",
)
def _flag_in_dir(
self,
data_file: Path,
components_dir: Path,
path_in_repo: str | None,
flag_data: list[Any],
flag_option: str = "",
username: str = "",
) -> int:
# Deserialize components (write images/audio to files)
features, row = self._deserialize_components(
components_dir, flag_data, flag_option, username
)
# Write generic info to dataset_infos.json + upload
with filelock.FileLock(str(self.infos_file) + ".lock"):
if not self.infos_file.exists():
self.infos_file.write_text(
json.dumps({"flagged": {"features": features}})
)
huggingface_hub.upload_file(
repo_id=self.dataset_id,
repo_type="dataset",
token=self.hf_token,
path_in_repo=self.infos_file.name,
path_or_fileobj=self.infos_file,
)
headers = list(features.keys())
if not self.separate_dirs:
with filelock.FileLock(components_dir / ".lock"):
sample_nb = self._save_as_csv(data_file, headers=headers, row=row)
sample_name = str(sample_nb)
huggingface_hub.upload_folder(
repo_id=self.dataset_id,
repo_type="dataset",
commit_message=f"Flagged sample #{sample_name}",
path_in_repo=path_in_repo,
ignore_patterns="*.lock",
folder_path=components_dir,
token=self.hf_token,
)
else:
sample_name = self._save_as_jsonl(data_file, headers=headers, row=row)
sample_nb = len(
[path for path in self.dataset_dir.iterdir() if path.is_dir()]
)
huggingface_hub.upload_folder(
repo_id=self.dataset_id,
repo_type="dataset",
commit_message=f"Flagged sample #{sample_name}",
path_in_repo=path_in_repo,
ignore_patterns="*.lock",
folder_path=components_dir,
token=self.hf_token,
)
return sample_nb
@staticmethod
def _save_as_csv(data_file: Path, headers: list[str], row: list[Any]) -> int:
"""Save data as CSV and return the sample name (row number)."""
is_new = not data_file.exists()
with data_file.open("a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
# Write CSV headers if new file
if is_new:
writer.writerow(utils.sanitize_list_for_csv(headers))
# Write CSV row for flagged sample
writer.writerow(utils.sanitize_list_for_csv(row))
with data_file.open(encoding="utf-8") as csvfile:
return sum(1 for _ in csv.reader(csvfile)) - 1
@staticmethod
def _save_as_jsonl(data_file: Path, headers: list[str], row: list[Any]) -> str:
"""Save data as JSONL and return the sample name (uuid)."""
Path.mkdir(data_file.parent, parents=True, exist_ok=True)
with open(data_file, "w") as f:
json.dump(dict(zip(headers, row)), f)
return data_file.parent.name
def _deserialize_components(
self,
data_dir: Path,
flag_data: list[Any],
flag_option: str = "",
username: str = "",
) -> tuple[dict[Any, Any], list[Any]]:
"""Deserialize components and return the corresponding row for the flagged sample.
Images/audio are saved to disk as individual files.
"""
# Components that can have a preview on dataset repos
file_preview_types = {gr.Audio: "Audio", gr.Image: "Image"}
# Generate the row corresponding to the flagged sample
features = OrderedDict()
row = []
for component, sample in zip(self.components, flag_data):
# Get deserialized object (will save sample to disk if applicable -file, audio, image,...-)
label = component.label or ""
save_dir = data_dir / client_utils.strip_invalid_filename_characters(label)
save_dir.mkdir(exist_ok=True, parents=True)
deserialized = utils.simplify_file_data_in_str(
component.flag(sample, save_dir)
)
# Add deserialized object to row
features[label] = {"dtype": "string", "_type": "Value"}
try:
deserialized_path = Path(deserialized)
if not deserialized_path.exists():
raise FileNotFoundError(f"File {deserialized} not found")
row.append(str(deserialized_path.relative_to(self.dataset_dir)))
except (FileNotFoundError, TypeError, ValueError):
deserialized = "" if deserialized is None else str(deserialized)
row.append(deserialized)
# If component is eligible for a preview, add the URL of the file
# Be mindful that images and audio can be None
if isinstance(component, tuple(file_preview_types)): # type: ignore
for _component, _type in file_preview_types.items():
if isinstance(component, _component):
features[label + " file"] = {"_type": _type}
break
if deserialized:
path_in_repo = str( # returned filepath is absolute, we want it relative to compute URL
Path(deserialized).relative_to(self.dataset_dir)
).replace("\\", "/")
row.append(
huggingface_hub.hf_hub_url(
repo_id=self.dataset_id,
filename=path_in_repo,
repo_type="dataset",
)
)
else:
row.append("")
features["flag"] = {"dtype": "string", "_type": "Value"}
features["username"] = {"dtype": "string", "_type": "Value"}
row.append(flag_option)
row.append(username)
return features, row
class FlagMethod:
"""
Helper class that contains the flagging options and calls the flagging method. Also
provides visual feedback to the user when flag is clicked.
"""
def __init__(
self,
flagging_callback: FlaggingCallback,
label: str,
value: str,
visual_feedback: bool = True,
):
self.flagging_callback = flagging_callback
self.label = label
self.value = value
self.__name__ = "Flag"
self.visual_feedback = visual_feedback
def __call__(self, request: gr.Request, *flag_data):
try:
self.flagging_callback.flag(
list(flag_data), flag_option=self.value, username=request.username
)
except Exception as e:
print(f"Error while flagging: {e}")
if self.visual_feedback:
return "Error!"
if not self.visual_feedback:
return
time.sleep(0.8) # to provide enough time for the user to observe button change
return self.reset()
def reset(self):
return gr.Button(value=self.label, interactive=True)
|