File size: 7,574 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""gr.Dataset() component."""

from __future__ import annotations

from typing import Any, Literal

from gradio_client.documentation import document

from gradio import processing_utils
from gradio.components.base import (
    Component,
    get_component_instance,
)
from gradio.events import Events


@document()
class Dataset(Component):
    """
    Creates a gallery or table to display data samples. This component is designed for internal use to display examples.
    """

    EVENTS = [Events.click, Events.select]

    def __init__(
        self,
        *,
        label: str | None = None,
        components: list[Component] | list[str],
        component_props: list[dict[str, Any]] | None = None,
        samples: list[list[Any]] | None = None,
        headers: list[str] | None = None,
        type: Literal["values", "index"] = "values",
        samples_per_page: int = 10,
        visible: bool = True,
        elem_id: str | None = None,
        elem_classes: list[str] | str | None = None,
        render: bool = True,
        key: int | str | None = None,
        container: bool = True,
        scale: int | None = None,
        min_width: int = 160,
        proxy_url: str | None = None,
    ):
        """
        Parameters:
            label: The label for this component, appears above the component.
            components: Which component types to show in this dataset widget, can be passed in as a list of string names or Components instances. The following components are supported in a Dataset: Audio, Checkbox, CheckboxGroup, ColorPicker, Dataframe, Dropdown, File, HTML, Image, Markdown, Model3D, Number, Radio, Slider, Textbox, TimeSeries, Video
            samples: a nested list of samples. Each sublist within the outer list represents a data sample, and each element within the sublist represents an value for each component
            headers: Column headers in the Dataset widget, should be the same len as components. If not provided, inferred from component labels
            type: 'values' if clicking on a sample should pass the value of the sample, or "index" if it should pass the index of the sample
            samples_per_page: how many examples to show per page.
            visible: If False, component will be hidden.
            elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
            elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
            render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
            key: if assigned, will be used to assume identity across a re-render. Components that have the same key across a re-render will have their value preserved.
            container: If True, will place the component in a container - providing some extra padding around the border.
            scale: relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.
            min_width: minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.
            proxy_url: The URL of the external Space used to load this component. Set automatically when using `gr.load()`. This should not be set manually.
        """
        super().__init__(
            visible=visible,
            elem_id=elem_id,
            elem_classes=elem_classes,
            render=render,
            key=key,
        )
        self.container = container
        self.scale = scale
        self.min_width = min_width
        self._components = [get_component_instance(c) for c in components]
        if component_props is None:
            self.component_props = [
                component.recover_kwargs(
                    component.get_config(),
                    ["value"],
                )
                for component in self._components
            ]
        else:
            self.component_props = component_props

        # Narrow type to Component
        if not all(isinstance(c, Component) for c in self._components):
            raise TypeError(
                "All components in a `Dataset` must be subclasses of `Component`"
            )
        self._components = [c for c in self._components if isinstance(c, Component)]
        self.proxy_url = proxy_url
        for component in self._components:
            component.proxy_url = proxy_url
        self.samples = [[]] if samples is None else samples
        for example in self.samples:
            for i, (component, ex) in enumerate(zip(self._components, example)):
                # If proxy_url is set, that means it is being loaded from an external Gradio app
                # which means that the example has already been processed.
                if self.proxy_url is None:
                    # The `as_example()` method has been renamed to `process_example()` but we
                    # use the previous name to be backwards-compatible with previously-created
                    # custom components
                    example[i] = component.as_example(ex)
                example[i] = processing_utils.move_files_to_cache(
                    example[i], component, keep_in_cache=True
                )
        self.type = type
        self.label = label
        if headers is not None:
            self.headers = headers
        elif all(c.label is None for c in self._components):
            self.headers = []
        else:
            self.headers = [c.label or "" for c in self._components]
        self.samples_per_page = samples_per_page

    def api_info(self) -> dict[str, str]:
        return {"type": "integer", "description": "index of selected example"}

    def get_config(self):
        config = super().get_config()

        config["components"] = []
        config["component_props"] = self.component_props
        config["component_ids"] = []

        for component in self._components:
            config["components"].append(component.get_block_name())

            config["component_ids"].append(component._id)

        return config

    def preprocess(self, payload: int) -> int | list | None:
        """
        Parameters:
            payload: the index of the selected example in the dataset
        Returns:
            Passes the selected sample either as a `list` of data corresponding to each input component (if `type` is "value") or as an `int` index (if `type` is "index")
        """
        if self.type == "index":
            return payload
        elif self.type == "values":
            return self.samples[payload]

    def postprocess(self, samples: list[list]) -> dict:
        """
        Parameters:
            samples: Expects a `list[list]` corresponding to the dataset data, can be used to update the dataset.
        Returns:
            Returns the updated dataset data as a `dict` with the key "samples".
        """
        return {
            "samples": samples,
            "__type__": "update",
        }

    def example_payload(self) -> Any:
        return 0

    def example_value(self) -> Any:
        return []