File size: 29,833 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
This file defines a useful high-level abstraction to build Gradio chatbots: ChatInterface.
"""

from __future__ import annotations

import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast

import anyio
from gradio_client.documentation import document

from gradio.blocks import Blocks
from gradio.components import (
    Button,
    Chatbot,
    Component,
    Markdown,
    MultimodalTextbox,
    State,
    Textbox,
    get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples  # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration, async_lambda


@document()
class ChatInterface(Blocks):
    """
    ChatInterface is Gradio's high-level abstraction for creating chatbot UIs, and allows you to create
    a web-based demo around a chatbot model in a few lines of code. Only one parameter is required: fn, which
    takes a function that governs the response of the chatbot based on the user input and chat history. Additional
    parameters can be used to control the appearance and behavior of the demo.

    Example:
        import gradio as gr

        def echo(message, history):
            return message

        demo = gr.ChatInterface(fn=echo, examples=["hello", "hola", "merhaba"], title="Echo Bot")
        demo.launch()
    Demos: chatinterface_multimodal, chatinterface_random_response, chatinterface_streaming_echo
    Guides: creating-a-chatbot-fast, sharing-your-app
    """

    def __init__(
        self,
        fn: Callable,
        *,
        multimodal: bool = False,
        chatbot: Chatbot | None = None,
        textbox: Textbox | MultimodalTextbox | None = None,
        additional_inputs: str | Component | list[str | Component] | None = None,
        additional_inputs_accordion_name: str | None = None,
        additional_inputs_accordion: str | Accordion | None = None,
        examples: list[str] | list[dict[str, str | list]] | list[list] | None = None,
        cache_examples: bool | Literal["lazy"] | None = None,
        examples_per_page: int = 10,
        title: str | None = None,
        description: str | None = None,
        theme: Theme | str | None = None,
        css: str | None = None,
        js: str | None = None,
        head: str | None = None,
        analytics_enabled: bool | None = None,
        submit_btn: str | None | Button = "Submit",
        stop_btn: str | None | Button = "Stop",
        retry_btn: str | None | Button = "🔄  Retry",
        undo_btn: str | None | Button = "↩️ Undo",
        clear_btn: str | None | Button = "🗑️  Clear",
        autofocus: bool = True,
        concurrency_limit: int | None | Literal["default"] = "default",
        fill_height: bool = True,
        delete_cache: tuple[int, int] | None = None,
    ):
        """
        Parameters:
            fn: The function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
            multimodal: If True, the chat interface will use a gr.MultimodalTextbox component for the input, which allows for the uploading of multimedia files. If False, the chat interface will use a gr.Textbox component for the input.
            chatbot: An instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
            textbox: An instance of the gr.Textbox or gr.MultimodalTextbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox or gr.MultimodalTextbox component will be created.
            additional_inputs: An instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
            additional_inputs_accordion_name: Deprecated. Will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead.
            additional_inputs_accordion: If a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
            examples: Sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input. Should be a list of strings if `multimodal` is False, and a list of dictionaries (with keys `text` and `files`) if `multimodal` is True.
            cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            examples_per_page: If examples are provided, how many to display per page.
            title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
            description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
            theme: Theme to use, loaded from gradio.themes.
            css: Custom css as a string or path to a css file. This css will be included in the demo webpage.
            js: Custom js as a string or path to a js file. The custom js should be in the form of a single js function. This function will automatically be executed when the page loads. For more flexibility, use the head parameter to insert js inside <script> tags.
            head: Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, multiple scripts, stylesheets, etc. to the page.
            analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
            submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
            stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
            retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
            undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
            clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
            autofocus: If True, autofocuses to the textbox when the page loads.
            concurrency_limit: If set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
            fill_height: If True, the chat interface will expand to the height of window.
            delete_cache: A tuple corresponding [frequency, age] both expressed in number of seconds. Every `frequency` seconds, the temporary files created by this Blocks instance will be deleted if more than `age` seconds have passed since the file was created. For example, setting this to (86400, 86400) will delete temporary files every day. The cache will be deleted entirely when the server restarts. If None, no cache deletion will occur.
        """
        super().__init__(
            analytics_enabled=analytics_enabled,
            mode="chat_interface",
            css=css,
            title=title or "Gradio",
            theme=theme,
            js=js,
            head=head,
            fill_height=fill_height,
            delete_cache=delete_cache,
        )
        self.multimodal = multimodal
        self.concurrency_limit = concurrency_limit
        self.fn = fn
        self.is_async = inspect.iscoroutinefunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.is_generator = inspect.isgeneratorfunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.buttons: list[Button | None] = []

        self.examples = examples
        self.cache_examples = cache_examples

        if additional_inputs:
            if not isinstance(additional_inputs, list):
                additional_inputs = [additional_inputs]
            self.additional_inputs = [
                get_component_instance(i)
                for i in additional_inputs  # type: ignore
            ]
        else:
            self.additional_inputs = []
        if additional_inputs_accordion_name is not None:
            print(
                "The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
            )
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion_name
            }
        if additional_inputs_accordion is None:
            self.additional_inputs_accordion_params = {
                "label": "Additional Inputs",
                "open": False,
            }
        elif isinstance(additional_inputs_accordion, str):
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion
            }
        elif isinstance(additional_inputs_accordion, Accordion):
            self.additional_inputs_accordion_params = (
                additional_inputs_accordion.recover_kwargs(
                    additional_inputs_accordion.get_config()
                )
            )
        else:
            raise ValueError(
                f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
            )

        with self:
            if title:
                Markdown(
                    f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
                )
            if description:
                Markdown(description)

            if chatbot:
                self.chatbot = chatbot.render()
            else:
                self.chatbot = Chatbot(
                    label="Chatbot", scale=1, height=200 if fill_height else None
                )

            with Row():
                for btn in [retry_btn, undo_btn, clear_btn]:
                    if btn is not None:
                        if isinstance(btn, Button):
                            btn.render()
                        elif isinstance(btn, str):
                            btn = Button(
                                btn, variant="secondary", size="sm", min_width=60
                            )
                        else:
                            raise ValueError(
                                f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
                            )
                    self.buttons.append(btn)  # type: ignore

            with Group():
                with Row():
                    if textbox:
                        if self.multimodal:
                            submit_btn = None
                        else:
                            textbox.container = False
                        textbox.show_label = False
                        textbox_ = textbox.render()
                        if not isinstance(textbox_, (Textbox, MultimodalTextbox)):
                            raise TypeError(
                                f"Expected a gr.Textbox or gr.MultimodalTextbox component, but got {type(textbox_)}"
                            )
                        self.textbox = textbox_
                    elif self.multimodal:
                        submit_btn = None
                        self.textbox = MultimodalTextbox(
                            show_label=False,
                            label="Message",
                            placeholder="Type a message...",
                            scale=7,
                            autofocus=autofocus,
                        )
                    else:
                        self.textbox = Textbox(
                            container=False,
                            show_label=False,
                            label="Message",
                            placeholder="Type a message...",
                            scale=7,
                            autofocus=autofocus,
                        )
                    if submit_btn is not None and not multimodal:
                        if isinstance(submit_btn, Button):
                            submit_btn.render()
                        elif isinstance(submit_btn, str):
                            submit_btn = Button(
                                submit_btn,
                                variant="primary",
                                scale=1,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The submit_btn parameter must be a gr.Button, string, or None, not {type(submit_btn)}"
                            )
                    if stop_btn is not None:
                        if isinstance(stop_btn, Button):
                            stop_btn.visible = False
                            stop_btn.render()
                        elif isinstance(stop_btn, str):
                            stop_btn = Button(
                                stop_btn,
                                variant="stop",
                                visible=False,
                                scale=1,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
                            )
                    self.buttons.extend([submit_btn, stop_btn])  # type: ignore

                self.fake_api_btn = Button("Fake API", visible=False)
                self.fake_response_textbox = Textbox(label="Response", visible=False)
                (
                    self.retry_btn,
                    self.undo_btn,
                    self.clear_btn,
                    self.submit_btn,
                    self.stop_btn,
                ) = self.buttons

            if examples:
                if self.is_generator:
                    examples_fn = self._examples_stream_fn
                else:
                    examples_fn = self._examples_fn

                self.examples_handler = Examples(
                    examples=examples,
                    inputs=[self.textbox] + self.additional_inputs,
                    outputs=self.chatbot,
                    fn=examples_fn,
                    cache_examples=self.cache_examples,
                    _defer_caching=True,
                    examples_per_page=examples_per_page,
                )

            any_unrendered_inputs = any(
                not inp.is_rendered for inp in self.additional_inputs
            )
            if self.additional_inputs and any_unrendered_inputs:
                with Accordion(**self.additional_inputs_accordion_params):  # type: ignore
                    for input_component in self.additional_inputs:
                        if not input_component.is_rendered:
                            input_component.render()

            # The example caching must happen after the input components have rendered
            if examples:
                self.examples_handler._start_caching()

            self.saved_input = State()
            self.chatbot_state = (
                State(self.chatbot.value) if self.chatbot.value else State([])
            )

            self._setup_events()
            self._setup_api()

    def _setup_events(self) -> None:
        submit_fn = self._stream_fn if self.is_generator else self._submit_fn
        submit_triggers = (
            [self.textbox.submit, self.submit_btn.click]
            if self.submit_btn
            else [self.textbox.submit]
        )
        submit_event = (
            on(
                submit_triggers,
                self._clear_and_save_textbox,
                [self.textbox],
                [self.textbox, self.saved_input],
                show_api=False,
                queue=False,
            )
            .then(
                self._display_input,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                show_api=False,
                queue=False,
            )
            .then(
                submit_fn,
                [self.saved_input, self.chatbot_state] + self.additional_inputs,
                [self.chatbot, self.chatbot_state],
                show_api=False,
                concurrency_limit=cast(
                    Union[int, Literal["default"], None], self.concurrency_limit
                ),
            )
        )
        self._setup_stop_events(submit_triggers, submit_event)

        if self.retry_btn:
            retry_event = (
                self.retry_btn.click(
                    self._delete_prev_fn,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.saved_input, self.chatbot_state],
                    show_api=False,
                    queue=False,
                )
                .then(
                    self._display_input,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.chatbot_state],
                    show_api=False,
                    queue=False,
                )
                .then(
                    submit_fn,
                    [self.saved_input, self.chatbot_state] + self.additional_inputs,
                    [self.chatbot, self.chatbot_state],
                    show_api=False,
                    concurrency_limit=cast(
                        Union[int, Literal["default"], None], self.concurrency_limit
                    ),
                )
            )
            self._setup_stop_events([self.retry_btn.click], retry_event)

        if self.undo_btn:
            self.undo_btn.click(
                self._delete_prev_fn,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.saved_input, self.chatbot_state],
                show_api=False,
                queue=False,
            ).then(
                async_lambda(lambda x: x),
                [self.saved_input],
                [self.textbox],
                show_api=False,
                queue=False,
            )

        if self.clear_btn:
            self.clear_btn.click(
                async_lambda(lambda: ([], [], None)),
                None,
                [self.chatbot, self.chatbot_state, self.saved_input],
                queue=False,
                show_api=False,
            )

    def _setup_stop_events(
        self, event_triggers: list[Callable], event_to_cancel: Dependency
    ) -> None:
        if self.stop_btn and self.is_generator:
            if self.submit_btn:
                for event_trigger in event_triggers:
                    event_trigger(
                        async_lambda(
                            lambda: (
                                Button(visible=False),
                                Button(visible=True),
                            )
                        ),
                        None,
                        [self.submit_btn, self.stop_btn],
                        show_api=False,
                        queue=False,
                    )
                event_to_cancel.then(
                    async_lambda(lambda: (Button(visible=True), Button(visible=False))),
                    None,
                    [self.submit_btn, self.stop_btn],
                    show_api=False,
                    queue=False,
                )
            else:
                for event_trigger in event_triggers:
                    event_trigger(
                        async_lambda(lambda: Button(visible=True)),
                        None,
                        [self.stop_btn],
                        show_api=False,
                        queue=False,
                    )
                event_to_cancel.then(
                    async_lambda(lambda: Button(visible=False)),
                    None,
                    [self.stop_btn],
                    show_api=False,
                    queue=False,
                )
            self.stop_btn.click(
                None,
                None,
                None,
                cancels=event_to_cancel,
                show_api=False,
            )

    def _setup_api(self) -> None:
        api_fn = self._api_stream_fn if self.is_generator else self._api_submit_fn

        self.fake_api_btn.click(
            api_fn,
            [self.textbox, self.chatbot_state] + self.additional_inputs,
            [self.textbox, self.chatbot_state],
            api_name="chat",
            concurrency_limit=cast(
                Union[int, Literal["default"], None], self.concurrency_limit
            ),
        )

    def _clear_and_save_textbox(self, message: str) -> tuple[str | dict, str]:
        if self.multimodal:
            return {"text": "", "files": []}, message
        else:
            return "", message

    def _append_multimodal_history(
        self,
        message: dict[str, list],
        response: str | None,
        history: list[list[str | tuple | None]],
    ):
        for x in message["files"]:
            history.append([(x,), None])
        if message["text"] is None or not isinstance(message["text"], str):
            return
        elif message["text"] == "" and message["files"] != []:
            history.append([None, response])
        else:
            history.append([message["text"], response])

    async def _display_input(
        self, message: str | dict[str, list], history: list[list[str | tuple | None]]
    ) -> tuple[list[list[str | tuple | None]], list[list[str | tuple | None]]]:
        if self.multimodal and isinstance(message, dict):
            self._append_multimodal_history(message, None, history)
        elif isinstance(message, str):
            history.append([message, None])
        return history, history

    async def _submit_fn(
        self,
        message: str | dict[str, list],
        history_with_input: list[list[str | tuple | None]],
        request: Request,
        *args,
    ) -> tuple[list[list[str | tuple | None]], list[list[str | tuple | None]]]:
        if self.multimodal and isinstance(message, dict):
            remove_input = (
                len(message["files"]) + 1
                if message["text"] is not None
                else len(message["files"])
            )
            history = history_with_input[:-remove_input]
        else:
            history = history_with_input[:-1]
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )

        if self.multimodal and isinstance(message, dict):
            self._append_multimodal_history(message, response, history)
        elif isinstance(message, str):
            history.append([message, response])
        return history, history

    async def _stream_fn(
        self,
        message: str | dict[str, list],
        history_with_input: list[list[str | tuple | None]],
        request: Request,
        *args,
    ) -> AsyncGenerator:
        if self.multimodal and isinstance(message, dict):
            remove_input = (
                len(message["files"]) + 1
                if message["text"] is not None
                else len(message["files"])
            )
            history = history_with_input[:-remove_input]
        else:
            history = history_with_input[:-1]
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)
        try:
            first_response = await async_iteration(generator)
            if self.multimodal and isinstance(message, dict):
                for x in message["files"]:
                    history.append([(x,), None])
                update = history + [[message["text"], first_response]]
                yield update, update
            else:
                update = history + [[message, first_response]]
                yield update, update
        except StopIteration:
            if self.multimodal and isinstance(message, dict):
                self._append_multimodal_history(message, None, history)
                yield history, history
            else:
                update = history + [[message, None]]
                yield update, update
        async for response in generator:
            if self.multimodal and isinstance(message, dict):
                update = history + [[message["text"], response]]
                yield update, update
            else:
                update = history + [[message, response]]
                yield update, update

    async def _api_submit_fn(
        self, message: str, history: list[list[str | None]], request: Request, *args
    ) -> tuple[str, list[list[str | None]]]:
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
        history.append([message, response])
        return response, history

    async def _api_stream_fn(
        self, message: str, history: list[list[str | None]], request: Request, *args
    ) -> AsyncGenerator:
        inputs, _, _ = special_args(
            self.fn, inputs=[message, history, *args], request=request
        )

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)
        try:
            first_response = await async_iteration(generator)
            yield first_response, history + [[message, first_response]]
        except StopIteration:
            yield None, history + [[message, None]]
        async for response in generator:
            yield response, history + [[message, response]]

    async def _examples_fn(self, message: str, *args) -> list[list[str | None]]:
        inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
        return [[message, response]]

    async def _examples_stream_fn(
        self,
        message: str,
        *args,
    ) -> AsyncGenerator:
        inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)
        async for response in generator:
            yield [[message, response]]

    async def _delete_prev_fn(
        self,
        message: str | dict[str, list],
        history: list[list[str | tuple | None]],
    ) -> tuple[
        list[list[str | tuple | None]],
        str | dict[str, list],
        list[list[str | tuple | None]],
    ]:
        if self.multimodal and isinstance(message, dict):
            remove_input = (
                len(message["files"]) + 1
                if message["text"] is not None
                else len(message["files"])
            )
            history = history[:-remove_input]
        else:
            history = history[:-1]
        return history, message or "", history