File size: 5,146 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import glob
import torch
import hashlib
import librosa
import base64
from glob import glob
import numpy as np
from pydub import AudioSegment
from faster_whisper import WhisperModel
import hashlib
import base64
import librosa
from whisper_timestamped.transcribe import get_audio_tensor, get_vad_segments

model_size = "medium"
# Run on GPU with FP16
model = None
def split_audio_whisper(audio_path, audio_name, target_dir='processed'):
    global model
    if model is None:
        mmodel = WhisperModel(model_size, device="cpu", compute_type="float32") 
    audio = AudioSegment.from_file(audio_path)
    max_len = len(audio)

    target_folder = os.path.join(target_dir, audio_name)
    
    segments, info = model.transcribe(audio_path, beam_size=5, word_timestamps=True)
    segments = list(segments)    

    # create directory
    os.makedirs(target_folder, exist_ok=True)
    wavs_folder = os.path.join(target_folder, 'wavs')
    os.makedirs(wavs_folder, exist_ok=True)

    # segments
    s_ind = 0
    start_time = None
    
    for k, w in enumerate(segments):
        # process with the time
        if k == 0:
            start_time = max(0, w.start)

        end_time = w.end

        # calculate confidence
        if len(w.words) > 0:
            confidence = sum([s.probability for s in w.words]) / len(w.words)
        else:
            confidence = 0.
        # clean text
        text = w.text.replace('...', '')

        # left 0.08s for each audios
        audio_seg = audio[int( start_time * 1000) : min(max_len, int(end_time * 1000) + 80)]

        # segment file name
        fname = f"{audio_name}_seg{s_ind}.wav"

        # filter out the segment shorter than 1.5s and longer than 20s
        save = audio_seg.duration_seconds > 1.5 and \
                audio_seg.duration_seconds < 20. and \
                len(text) >= 2 and len(text) < 200 

        if save:
            output_file = os.path.join(wavs_folder, fname)
            audio_seg.export(output_file, format='wav')

        if k < len(segments) - 1:
            start_time = max(0, segments[k+1].start - 0.08)

        s_ind = s_ind + 1
    return wavs_folder


def split_audio_vad(audio_path, audio_name, target_dir, split_seconds=10.0):
    SAMPLE_RATE = 16000
    audio_vad = get_audio_tensor(audio_path)
    segments = get_vad_segments(
        audio_vad,
        output_sample=True,
        min_speech_duration=0.1,
        min_silence_duration=1,
        method="silero",
    )
    segments = [(seg["start"], seg["end"]) for seg in segments]
    segments = [(float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s,e in segments]
    print(segments)
    audio_active = AudioSegment.silent(duration=0)
    audio = AudioSegment.from_file(audio_path)

    for start_time, end_time in segments:
        audio_active += audio[int( start_time * 1000) : int(end_time * 1000)]
    
    audio_dur = audio_active.duration_seconds
    print(f'after vad: dur = {audio_dur}')
    target_folder = os.path.join(target_dir, audio_name)
    wavs_folder = os.path.join(target_folder, 'wavs')
    os.makedirs(wavs_folder, exist_ok=True)
    start_time = 0.
    count = 0
    num_splits = int(np.round(audio_dur / split_seconds))
    assert num_splits > 0, 'input audio is too short'
    interval = audio_dur / num_splits

    for i in range(num_splits):
        end_time = min(start_time + interval, audio_dur)
        if i == num_splits - 1:
            end_time = audio_dur
        output_file = f"{wavs_folder}/{audio_name}_seg{count}.wav"
        audio_seg = audio_active[int(start_time * 1000): int(end_time * 1000)]
        audio_seg.export(output_file, format='wav')
        start_time = end_time
        count += 1
    return wavs_folder

def hash_numpy_array(audio_path):
    array, _ = librosa.load(audio_path, sr=None, mono=True)
    # Convert the array to bytes
    array_bytes = array.tobytes()
    # Calculate the hash of the array bytes
    hash_object = hashlib.sha256(array_bytes)
    hash_value = hash_object.digest()
    # Convert the hash value to base64
    base64_value = base64.b64encode(hash_value)
    return base64_value.decode('utf-8')[:16].replace('/', '_^')

def get_se(audio_path, vc_model, target_dir='processed', vad=True):
    device = vc_model.device
    version = vc_model.version
    print("OpenVoice version:", version)

    audio_name = f"{os.path.basename(audio_path).rsplit('.', 1)[0]}_{version}_{hash_numpy_array(audio_path)}"
    se_path = os.path.join(target_dir, audio_name, 'se.pth')

    # if os.path.isfile(se_path):
    #     se = torch.load(se_path).to(device)
    #     return se, audio_name
    # if os.path.isdir(audio_path):
    #     wavs_folder = audio_path
    
    if vad:
        wavs_folder = split_audio_vad(audio_path, target_dir=target_dir, audio_name=audio_name)
    else:
        wavs_folder = split_audio_whisper(audio_path, target_dir=target_dir, audio_name=audio_name)
    
    audio_segs = glob(f'{wavs_folder}/*.wav')
    if len(audio_segs) == 0:
        raise NotImplementedError('No audio segments found!')
    
    return vc_model.extract_se(audio_segs, se_save_path=se_path), audio_name