File size: 23,134 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
from collections import deque
from copy import copy
from dataclasses import dataclass, is_dataclass
from enum import Enum
from typing import (
    Any,
    Callable,
    Deque,
    Dict,
    FrozenSet,
    List,
    Mapping,
    Sequence,
    Set,
    Tuple,
    Type,
    Union,
)

from fastapi.exceptions import RequestErrorModel
from fastapi.types import IncEx, ModelNameMap, UnionType
from pydantic import BaseModel, create_model
from pydantic.version import VERSION as P_VERSION
from starlette.datastructures import UploadFile
from typing_extensions import Annotated, Literal, get_args, get_origin

# Reassign variable to make it reexported for mypy
PYDANTIC_VERSION = P_VERSION
PYDANTIC_V2 = PYDANTIC_VERSION.startswith("2.")


sequence_annotation_to_type = {
    Sequence: list,
    List: list,
    list: list,
    Tuple: tuple,
    tuple: tuple,
    Set: set,
    set: set,
    FrozenSet: frozenset,
    frozenset: frozenset,
    Deque: deque,
    deque: deque,
}

sequence_types = tuple(sequence_annotation_to_type.keys())

if PYDANTIC_V2:
    from pydantic import PydanticSchemaGenerationError as PydanticSchemaGenerationError
    from pydantic import TypeAdapter
    from pydantic import ValidationError as ValidationError
    from pydantic._internal._schema_generation_shared import (  # type: ignore[attr-defined]
        GetJsonSchemaHandler as GetJsonSchemaHandler,
    )
    from pydantic._internal._typing_extra import eval_type_lenient
    from pydantic._internal._utils import lenient_issubclass as lenient_issubclass
    from pydantic.fields import FieldInfo
    from pydantic.json_schema import GenerateJsonSchema as GenerateJsonSchema
    from pydantic.json_schema import JsonSchemaValue as JsonSchemaValue
    from pydantic_core import CoreSchema as CoreSchema
    from pydantic_core import PydanticUndefined, PydanticUndefinedType
    from pydantic_core import Url as Url

    try:
        from pydantic_core.core_schema import (
            with_info_plain_validator_function as with_info_plain_validator_function,
        )
    except ImportError:  # pragma: no cover
        from pydantic_core.core_schema import (
            general_plain_validator_function as with_info_plain_validator_function,  # noqa: F401
        )

    Required = PydanticUndefined
    Undefined = PydanticUndefined
    UndefinedType = PydanticUndefinedType
    evaluate_forwardref = eval_type_lenient
    Validator = Any

    class BaseConfig:
        pass

    class ErrorWrapper(Exception):
        pass

    @dataclass
    class ModelField:
        field_info: FieldInfo
        name: str
        mode: Literal["validation", "serialization"] = "validation"

        @property
        def alias(self) -> str:
            a = self.field_info.alias
            return a if a is not None else self.name

        @property
        def required(self) -> bool:
            return self.field_info.is_required()

        @property
        def default(self) -> Any:
            return self.get_default()

        @property
        def type_(self) -> Any:
            return self.field_info.annotation

        def __post_init__(self) -> None:
            self._type_adapter: TypeAdapter[Any] = TypeAdapter(
                Annotated[self.field_info.annotation, self.field_info]
            )

        def get_default(self) -> Any:
            if self.field_info.is_required():
                return Undefined
            return self.field_info.get_default(call_default_factory=True)

        def validate(
            self,
            value: Any,
            values: Dict[str, Any] = {},  # noqa: B006
            *,
            loc: Tuple[Union[int, str], ...] = (),
        ) -> Tuple[Any, Union[List[Dict[str, Any]], None]]:
            try:
                return (
                    self._type_adapter.validate_python(value, from_attributes=True),
                    None,
                )
            except ValidationError as exc:
                return None, _regenerate_error_with_loc(
                    errors=exc.errors(include_url=False), loc_prefix=loc
                )

        def serialize(
            self,
            value: Any,
            *,
            mode: Literal["json", "python"] = "json",
            include: Union[IncEx, None] = None,
            exclude: Union[IncEx, None] = None,
            by_alias: bool = True,
            exclude_unset: bool = False,
            exclude_defaults: bool = False,
            exclude_none: bool = False,
        ) -> Any:
            # What calls this code passes a value that already called
            # self._type_adapter.validate_python(value)
            return self._type_adapter.dump_python(
                value,
                mode=mode,
                include=include,
                exclude=exclude,
                by_alias=by_alias,
                exclude_unset=exclude_unset,
                exclude_defaults=exclude_defaults,
                exclude_none=exclude_none,
            )

        def __hash__(self) -> int:
            # Each ModelField is unique for our purposes, to allow making a dict from
            # ModelField to its JSON Schema.
            return id(self)

    def get_annotation_from_field_info(
        annotation: Any, field_info: FieldInfo, field_name: str
    ) -> Any:
        return annotation

    def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
        return errors  # type: ignore[return-value]

    def _model_rebuild(model: Type[BaseModel]) -> None:
        model.model_rebuild()

    def _model_dump(
        model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
    ) -> Any:
        return model.model_dump(mode=mode, **kwargs)

    def _get_model_config(model: BaseModel) -> Any:
        return model.model_config

    def get_schema_from_model_field(
        *,
        field: ModelField,
        schema_generator: GenerateJsonSchema,
        model_name_map: ModelNameMap,
        field_mapping: Dict[
            Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
        ],
        separate_input_output_schemas: bool = True,
    ) -> Dict[str, Any]:
        override_mode: Union[Literal["validation"], None] = (
            None if separate_input_output_schemas else "validation"
        )
        # This expects that GenerateJsonSchema was already used to generate the definitions
        json_schema = field_mapping[(field, override_mode or field.mode)]
        if "$ref" not in json_schema:
            # TODO remove when deprecating Pydantic v1
            # Ref: https://github.com/pydantic/pydantic/blob/d61792cc42c80b13b23e3ffa74bc37ec7c77f7d1/pydantic/schema.py#L207
            json_schema["title"] = (
                field.field_info.title or field.alias.title().replace("_", " ")
            )
        return json_schema

    def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
        return {}

    def get_definitions(
        *,
        fields: List[ModelField],
        schema_generator: GenerateJsonSchema,
        model_name_map: ModelNameMap,
        separate_input_output_schemas: bool = True,
    ) -> Tuple[
        Dict[
            Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
        ],
        Dict[str, Dict[str, Any]],
    ]:
        override_mode: Union[Literal["validation"], None] = (
            None if separate_input_output_schemas else "validation"
        )
        inputs = [
            (field, override_mode or field.mode, field._type_adapter.core_schema)
            for field in fields
        ]
        field_mapping, definitions = schema_generator.generate_definitions(
            inputs=inputs
        )
        return field_mapping, definitions  # type: ignore[return-value]

    def is_scalar_field(field: ModelField) -> bool:
        from fastapi import params

        return field_annotation_is_scalar(
            field.field_info.annotation
        ) and not isinstance(field.field_info, params.Body)

    def is_sequence_field(field: ModelField) -> bool:
        return field_annotation_is_sequence(field.field_info.annotation)

    def is_scalar_sequence_field(field: ModelField) -> bool:
        return field_annotation_is_scalar_sequence(field.field_info.annotation)

    def is_bytes_field(field: ModelField) -> bool:
        return is_bytes_or_nonable_bytes_annotation(field.type_)

    def is_bytes_sequence_field(field: ModelField) -> bool:
        return is_bytes_sequence_annotation(field.type_)

    def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
        cls = type(field_info)
        merged_field_info = cls.from_annotation(annotation)
        new_field_info = copy(field_info)
        new_field_info.metadata = merged_field_info.metadata
        new_field_info.annotation = merged_field_info.annotation
        return new_field_info

    def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
        origin_type = (
            get_origin(field.field_info.annotation) or field.field_info.annotation
        )
        assert issubclass(origin_type, sequence_types)  # type: ignore[arg-type]
        return sequence_annotation_to_type[origin_type](value)  # type: ignore[no-any-return]

    def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
        error = ValidationError.from_exception_data(
            "Field required", [{"type": "missing", "loc": loc, "input": {}}]
        ).errors(include_url=False)[0]
        error["input"] = None
        return error  # type: ignore[return-value]

    def create_body_model(
        *, fields: Sequence[ModelField], model_name: str
    ) -> Type[BaseModel]:
        field_params = {f.name: (f.field_info.annotation, f.field_info) for f in fields}
        BodyModel: Type[BaseModel] = create_model(model_name, **field_params)  # type: ignore[call-overload]
        return BodyModel

else:
    from fastapi.openapi.constants import REF_PREFIX as REF_PREFIX
    from pydantic import AnyUrl as Url  # noqa: F401
    from pydantic import (  # type: ignore[assignment]
        BaseConfig as BaseConfig,  # noqa: F401
    )
    from pydantic import ValidationError as ValidationError  # noqa: F401
    from pydantic.class_validators import (  # type: ignore[no-redef]
        Validator as Validator,  # noqa: F401
    )
    from pydantic.error_wrappers import (  # type: ignore[no-redef]
        ErrorWrapper as ErrorWrapper,  # noqa: F401
    )
    from pydantic.errors import MissingError
    from pydantic.fields import (  # type: ignore[attr-defined]
        SHAPE_FROZENSET,
        SHAPE_LIST,
        SHAPE_SEQUENCE,
        SHAPE_SET,
        SHAPE_SINGLETON,
        SHAPE_TUPLE,
        SHAPE_TUPLE_ELLIPSIS,
    )
    from pydantic.fields import FieldInfo as FieldInfo
    from pydantic.fields import (  # type: ignore[no-redef,attr-defined]
        ModelField as ModelField,  # noqa: F401
    )
    from pydantic.fields import (  # type: ignore[no-redef,attr-defined]
        Required as Required,  # noqa: F401
    )
    from pydantic.fields import (  # type: ignore[no-redef,attr-defined]
        Undefined as Undefined,
    )
    from pydantic.fields import (  # type: ignore[no-redef, attr-defined]
        UndefinedType as UndefinedType,  # noqa: F401
    )
    from pydantic.schema import (
        field_schema,
        get_flat_models_from_fields,
        get_model_name_map,
        model_process_schema,
    )
    from pydantic.schema import (  # type: ignore[no-redef]  # noqa: F401
        get_annotation_from_field_info as get_annotation_from_field_info,
    )
    from pydantic.typing import (  # type: ignore[no-redef]
        evaluate_forwardref as evaluate_forwardref,  # noqa: F401
    )
    from pydantic.utils import (  # type: ignore[no-redef]
        lenient_issubclass as lenient_issubclass,  # noqa: F401
    )

    GetJsonSchemaHandler = Any  # type: ignore[assignment,misc]
    JsonSchemaValue = Dict[str, Any]  # type: ignore[misc]
    CoreSchema = Any  # type: ignore[assignment,misc]

    sequence_shapes = {
        SHAPE_LIST,
        SHAPE_SET,
        SHAPE_FROZENSET,
        SHAPE_TUPLE,
        SHAPE_SEQUENCE,
        SHAPE_TUPLE_ELLIPSIS,
    }
    sequence_shape_to_type = {
        SHAPE_LIST: list,
        SHAPE_SET: set,
        SHAPE_TUPLE: tuple,
        SHAPE_SEQUENCE: list,
        SHAPE_TUPLE_ELLIPSIS: list,
    }

    @dataclass
    class GenerateJsonSchema:  # type: ignore[no-redef]
        ref_template: str

    class PydanticSchemaGenerationError(Exception):  # type: ignore[no-redef]
        pass

    def with_info_plain_validator_function(  # type: ignore[misc]
        function: Callable[..., Any],
        *,
        ref: Union[str, None] = None,
        metadata: Any = None,
        serialization: Any = None,
    ) -> Any:
        return {}

    def get_model_definitions(
        *,
        flat_models: Set[Union[Type[BaseModel], Type[Enum]]],
        model_name_map: Dict[Union[Type[BaseModel], Type[Enum]], str],
    ) -> Dict[str, Any]:
        definitions: Dict[str, Dict[str, Any]] = {}
        for model in flat_models:
            m_schema, m_definitions, m_nested_models = model_process_schema(
                model, model_name_map=model_name_map, ref_prefix=REF_PREFIX
            )
            definitions.update(m_definitions)
            model_name = model_name_map[model]
            if "description" in m_schema:
                m_schema["description"] = m_schema["description"].split("\f")[0]
            definitions[model_name] = m_schema
        return definitions

    def is_pv1_scalar_field(field: ModelField) -> bool:
        from fastapi import params

        field_info = field.field_info
        if not (
            field.shape == SHAPE_SINGLETON  # type: ignore[attr-defined]
            and not lenient_issubclass(field.type_, BaseModel)
            and not lenient_issubclass(field.type_, dict)
            and not field_annotation_is_sequence(field.type_)
            and not is_dataclass(field.type_)
            and not isinstance(field_info, params.Body)
        ):
            return False
        if field.sub_fields:  # type: ignore[attr-defined]
            if not all(
                is_pv1_scalar_field(f)
                for f in field.sub_fields  # type: ignore[attr-defined]
            ):
                return False
        return True

    def is_pv1_scalar_sequence_field(field: ModelField) -> bool:
        if (field.shape in sequence_shapes) and not lenient_issubclass(  # type: ignore[attr-defined]
            field.type_, BaseModel
        ):
            if field.sub_fields is not None:  # type: ignore[attr-defined]
                for sub_field in field.sub_fields:  # type: ignore[attr-defined]
                    if not is_pv1_scalar_field(sub_field):
                        return False
            return True
        if _annotation_is_sequence(field.type_):
            return True
        return False

    def _normalize_errors(errors: Sequence[Any]) -> List[Dict[str, Any]]:
        use_errors: List[Any] = []
        for error in errors:
            if isinstance(error, ErrorWrapper):
                new_errors = ValidationError(  # type: ignore[call-arg]
                    errors=[error], model=RequestErrorModel
                ).errors()
                use_errors.extend(new_errors)
            elif isinstance(error, list):
                use_errors.extend(_normalize_errors(error))
            else:
                use_errors.append(error)
        return use_errors

    def _model_rebuild(model: Type[BaseModel]) -> None:
        model.update_forward_refs()

    def _model_dump(
        model: BaseModel, mode: Literal["json", "python"] = "json", **kwargs: Any
    ) -> Any:
        return model.dict(**kwargs)

    def _get_model_config(model: BaseModel) -> Any:
        return model.__config__  # type: ignore[attr-defined]

    def get_schema_from_model_field(
        *,
        field: ModelField,
        schema_generator: GenerateJsonSchema,
        model_name_map: ModelNameMap,
        field_mapping: Dict[
            Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
        ],
        separate_input_output_schemas: bool = True,
    ) -> Dict[str, Any]:
        # This expects that GenerateJsonSchema was already used to generate the definitions
        return field_schema(  # type: ignore[no-any-return]
            field, model_name_map=model_name_map, ref_prefix=REF_PREFIX
        )[0]

    def get_compat_model_name_map(fields: List[ModelField]) -> ModelNameMap:
        models = get_flat_models_from_fields(fields, known_models=set())
        return get_model_name_map(models)  # type: ignore[no-any-return]

    def get_definitions(
        *,
        fields: List[ModelField],
        schema_generator: GenerateJsonSchema,
        model_name_map: ModelNameMap,
        separate_input_output_schemas: bool = True,
    ) -> Tuple[
        Dict[
            Tuple[ModelField, Literal["validation", "serialization"]], JsonSchemaValue
        ],
        Dict[str, Dict[str, Any]],
    ]:
        models = get_flat_models_from_fields(fields, known_models=set())
        return {}, get_model_definitions(
            flat_models=models, model_name_map=model_name_map
        )

    def is_scalar_field(field: ModelField) -> bool:
        return is_pv1_scalar_field(field)

    def is_sequence_field(field: ModelField) -> bool:
        return field.shape in sequence_shapes or _annotation_is_sequence(field.type_)  # type: ignore[attr-defined]

    def is_scalar_sequence_field(field: ModelField) -> bool:
        return is_pv1_scalar_sequence_field(field)

    def is_bytes_field(field: ModelField) -> bool:
        return lenient_issubclass(field.type_, bytes)

    def is_bytes_sequence_field(field: ModelField) -> bool:
        return field.shape in sequence_shapes and lenient_issubclass(field.type_, bytes)  # type: ignore[attr-defined]

    def copy_field_info(*, field_info: FieldInfo, annotation: Any) -> FieldInfo:
        return copy(field_info)

    def serialize_sequence_value(*, field: ModelField, value: Any) -> Sequence[Any]:
        return sequence_shape_to_type[field.shape](value)  # type: ignore[no-any-return,attr-defined]

    def get_missing_field_error(loc: Tuple[str, ...]) -> Dict[str, Any]:
        missing_field_error = ErrorWrapper(MissingError(), loc=loc)  # type: ignore[call-arg]
        new_error = ValidationError([missing_field_error], RequestErrorModel)
        return new_error.errors()[0]  # type: ignore[return-value]

    def create_body_model(
        *, fields: Sequence[ModelField], model_name: str
    ) -> Type[BaseModel]:
        BodyModel = create_model(model_name)
        for f in fields:
            BodyModel.__fields__[f.name] = f  # type: ignore[index]
        return BodyModel


def _regenerate_error_with_loc(
    *, errors: Sequence[Any], loc_prefix: Tuple[Union[str, int], ...]
) -> List[Dict[str, Any]]:
    updated_loc_errors: List[Any] = [
        {**err, "loc": loc_prefix + err.get("loc", ())}
        for err in _normalize_errors(errors)
    ]

    return updated_loc_errors


def _annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
    if lenient_issubclass(annotation, (str, bytes)):
        return False
    return lenient_issubclass(annotation, sequence_types)


def field_annotation_is_sequence(annotation: Union[Type[Any], None]) -> bool:
    return _annotation_is_sequence(annotation) or _annotation_is_sequence(
        get_origin(annotation)
    )


def value_is_sequence(value: Any) -> bool:
    return isinstance(value, sequence_types) and not isinstance(value, (str, bytes))  # type: ignore[arg-type]


def _annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
    return (
        lenient_issubclass(annotation, (BaseModel, Mapping, UploadFile))
        or _annotation_is_sequence(annotation)
        or is_dataclass(annotation)
    )


def field_annotation_is_complex(annotation: Union[Type[Any], None]) -> bool:
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        return any(field_annotation_is_complex(arg) for arg in get_args(annotation))

    return (
        _annotation_is_complex(annotation)
        or _annotation_is_complex(origin)
        or hasattr(origin, "__pydantic_core_schema__")
        or hasattr(origin, "__get_pydantic_core_schema__")
    )


def field_annotation_is_scalar(annotation: Any) -> bool:
    # handle Ellipsis here to make tuple[int, ...] work nicely
    return annotation is Ellipsis or not field_annotation_is_complex(annotation)


def field_annotation_is_scalar_sequence(annotation: Union[Type[Any], None]) -> bool:
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        at_least_one_scalar_sequence = False
        for arg in get_args(annotation):
            if field_annotation_is_scalar_sequence(arg):
                at_least_one_scalar_sequence = True
                continue
            elif not field_annotation_is_scalar(arg):
                return False
        return at_least_one_scalar_sequence
    return field_annotation_is_sequence(annotation) and all(
        field_annotation_is_scalar(sub_annotation)
        for sub_annotation in get_args(annotation)
    )


def is_bytes_or_nonable_bytes_annotation(annotation: Any) -> bool:
    if lenient_issubclass(annotation, bytes):
        return True
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        for arg in get_args(annotation):
            if lenient_issubclass(arg, bytes):
                return True
    return False


def is_uploadfile_or_nonable_uploadfile_annotation(annotation: Any) -> bool:
    if lenient_issubclass(annotation, UploadFile):
        return True
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        for arg in get_args(annotation):
            if lenient_issubclass(arg, UploadFile):
                return True
    return False


def is_bytes_sequence_annotation(annotation: Any) -> bool:
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        at_least_one = False
        for arg in get_args(annotation):
            if is_bytes_sequence_annotation(arg):
                at_least_one = True
                continue
        return at_least_one
    return field_annotation_is_sequence(annotation) and all(
        is_bytes_or_nonable_bytes_annotation(sub_annotation)
        for sub_annotation in get_args(annotation)
    )


def is_uploadfile_sequence_annotation(annotation: Any) -> bool:
    origin = get_origin(annotation)
    if origin is Union or origin is UnionType:
        at_least_one = False
        for arg in get_args(annotation):
            if is_uploadfile_sequence_annotation(arg):
                at_least_one = True
                continue
        return at_least_one
    return field_annotation_is_sequence(annotation) and all(
        is_uploadfile_or_nonable_uploadfile_annotation(sub_annotation)
        for sub_annotation in get_args(annotation)
    )