File size: 14,675 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
try:
    import cython

    COMPILED = cython.compiled
except (AttributeError, ImportError):
    # if cython not installed, use mock module with no-op decorators and types
    from fontTools.misc import cython

    COMPILED = False

from typing import (
    Sequence,
    Tuple,
    Union,
)
from numbers import Integral, Real


_Point = Tuple[Real, Real]
_Delta = Tuple[Real, Real]
_PointSegment = Sequence[_Point]
_DeltaSegment = Sequence[_Delta]
_DeltaOrNone = Union[_Delta, None]
_DeltaOrNoneSegment = Sequence[_DeltaOrNone]
_Endpoints = Sequence[Integral]


MAX_LOOKBACK = 8


@cython.cfunc
@cython.locals(
    j=cython.int,
    n=cython.int,
    x1=cython.double,
    x2=cython.double,
    d1=cython.double,
    d2=cython.double,
    scale=cython.double,
    x=cython.double,
    d=cython.double,
)
def iup_segment(
    coords: _PointSegment, rc1: _Point, rd1: _Delta, rc2: _Point, rd2: _Delta
):  # -> _DeltaSegment:
    """Given two reference coordinates `rc1` & `rc2` and their respective
    delta vectors `rd1` & `rd2`, returns interpolated deltas for the set of
    coordinates `coords`."""

    # rc1 = reference coord 1
    # rd1 = reference delta 1
    out_arrays = [None, None]
    for j in 0, 1:
        out_arrays[j] = out = []
        x1, x2, d1, d2 = rc1[j], rc2[j], rd1[j], rd2[j]

        if x1 == x2:
            n = len(coords)
            if d1 == d2:
                out.extend([d1] * n)
            else:
                out.extend([0] * n)
            continue

        if x1 > x2:
            x1, x2 = x2, x1
            d1, d2 = d2, d1

        # x1 < x2
        scale = (d2 - d1) / (x2 - x1)
        for pair in coords:
            x = pair[j]

            if x <= x1:
                d = d1
            elif x >= x2:
                d = d2
            else:
                # Interpolate
                d = d1 + (x - x1) * scale

            out.append(d)

    return zip(*out_arrays)


def iup_contour(deltas: _DeltaOrNoneSegment, coords: _PointSegment) -> _DeltaSegment:
    """For the contour given in `coords`, interpolate any missing
    delta values in delta vector `deltas`.

    Returns fully filled-out delta vector."""

    assert len(deltas) == len(coords)
    if None not in deltas:
        return deltas

    n = len(deltas)
    # indices of points with explicit deltas
    indices = [i for i, v in enumerate(deltas) if v is not None]
    if not indices:
        # All deltas are None.  Return 0,0 for all.
        return [(0, 0)] * n

    out = []
    it = iter(indices)
    start = next(it)
    if start != 0:
        # Initial segment that wraps around
        i1, i2, ri1, ri2 = 0, start, start, indices[-1]
        out.extend(
            iup_segment(
                coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
            )
        )
    out.append(deltas[start])
    for end in it:
        if end - start > 1:
            i1, i2, ri1, ri2 = start + 1, end, start, end
            out.extend(
                iup_segment(
                    coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
                )
            )
        out.append(deltas[end])
        start = end
    if start != n - 1:
        # Final segment that wraps around
        i1, i2, ri1, ri2 = start + 1, n, start, indices[0]
        out.extend(
            iup_segment(
                coords[i1:i2], coords[ri1], deltas[ri1], coords[ri2], deltas[ri2]
            )
        )

    assert len(deltas) == len(out), (len(deltas), len(out))
    return out


def iup_delta(
    deltas: _DeltaOrNoneSegment, coords: _PointSegment, ends: _Endpoints
) -> _DeltaSegment:
    """For the outline given in `coords`, with contour endpoints given
    in sorted increasing order in `ends`, interpolate any missing
    delta values in delta vector `deltas`.

    Returns fully filled-out delta vector."""

    assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
    n = len(coords)
    ends = ends + [n - 4, n - 3, n - 2, n - 1]
    out = []
    start = 0
    for end in ends:
        end += 1
        contour = iup_contour(deltas[start:end], coords[start:end])
        out.extend(contour)
        start = end

    return out


# Optimizer


@cython.cfunc
@cython.inline
@cython.locals(
    i=cython.int,
    j=cython.int,
    # tolerance=cython.double, # https://github.com/fonttools/fonttools/issues/3282
    x=cython.double,
    y=cython.double,
    p=cython.double,
    q=cython.double,
)
@cython.returns(int)
def can_iup_in_between(
    deltas: _DeltaSegment,
    coords: _PointSegment,
    i: Integral,
    j: Integral,
    tolerance: Real,
):  # -> bool:
    """Return true if the deltas for points at `i` and `j` (`i < j`) can be
    successfully used to interpolate deltas for points in between them within
    provided error tolerance."""

    assert j - i >= 2
    interp = iup_segment(coords[i + 1 : j], coords[i], deltas[i], coords[j], deltas[j])
    deltas = deltas[i + 1 : j]

    return all(
        abs(complex(x - p, y - q)) <= tolerance
        for (x, y), (p, q) in zip(deltas, interp)
    )


@cython.locals(
    cj=cython.double,
    dj=cython.double,
    lcj=cython.double,
    ldj=cython.double,
    ncj=cython.double,
    ndj=cython.double,
    force=cython.int,
    forced=set,
)
def _iup_contour_bound_forced_set(
    deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0
) -> set:
    """The forced set is a conservative set of points on the contour that must be encoded
    explicitly (ie. cannot be interpolated).  Calculating this set allows for significantly
    speeding up the dynamic-programming, as well as resolve circularity in DP.

    The set is precise; that is, if an index is in the returned set, then there is no way
    that IUP can generate delta for that point, given `coords` and `deltas`.
    """
    assert len(deltas) == len(coords)

    n = len(deltas)
    forced = set()
    # Track "last" and "next" points on the contour as we sweep.
    for i in range(len(deltas) - 1, -1, -1):
        ld, lc = deltas[i - 1], coords[i - 1]
        d, c = deltas[i], coords[i]
        nd, nc = deltas[i - n + 1], coords[i - n + 1]

        for j in (0, 1):  # For X and for Y
            cj = c[j]
            dj = d[j]
            lcj = lc[j]
            ldj = ld[j]
            ncj = nc[j]
            ndj = nd[j]

            if lcj <= ncj:
                c1, c2 = lcj, ncj
                d1, d2 = ldj, ndj
            else:
                c1, c2 = ncj, lcj
                d1, d2 = ndj, ldj

            force = False

            # If the two coordinates are the same, then the interpolation
            # algorithm produces the same delta if both deltas are equal,
            # and zero if they differ.
            #
            # This test has to be before the next one.
            if c1 == c2:
                if abs(d1 - d2) > tolerance and abs(dj) > tolerance:
                    force = True

            # If coordinate for current point is between coordinate of adjacent
            # points on the two sides, but the delta for current point is NOT
            # between delta for those adjacent points (considering tolerance
            # allowance), then there is no way that current point can be IUP-ed.
            # Mark it forced.
            elif c1 <= cj <= c2:  # and c1 != c2
                if not (min(d1, d2) - tolerance <= dj <= max(d1, d2) + tolerance):
                    force = True

            # Otherwise, the delta should either match the closest, or have the
            # same sign as the interpolation of the two deltas.
            else:  # cj < c1 or c2 < cj
                if d1 != d2:
                    if cj < c1:
                        if (
                            abs(dj) > tolerance
                            and abs(dj - d1) > tolerance
                            and ((dj - tolerance < d1) != (d1 < d2))
                        ):
                            force = True
                    else:  # c2 < cj
                        if (
                            abs(dj) > tolerance
                            and abs(dj - d2) > tolerance
                            and ((d2 < dj + tolerance) != (d1 < d2))
                        ):
                            force = True

            if force:
                forced.add(i)
                break

    return forced


@cython.locals(
    i=cython.int,
    j=cython.int,
    best_cost=cython.double,
    best_j=cython.int,
    cost=cython.double,
    forced=set,
    tolerance=cython.double,
)
def _iup_contour_optimize_dp(
    deltas: _DeltaSegment,
    coords: _PointSegment,
    forced=set(),
    tolerance: Real = 0,
    lookback: Integral = None,
):
    """Straightforward Dynamic-Programming.  For each index i, find least-costly encoding of
    points 0 to i where i is explicitly encoded.  We find this by considering all previous
    explicit points j and check whether interpolation can fill points between j and i.

    Note that solution always encodes last point explicitly.  Higher-level is responsible
    for removing that restriction.

    As major speedup, we stop looking further whenever we see a "forced" point."""

    n = len(deltas)
    if lookback is None:
        lookback = n
    lookback = min(lookback, MAX_LOOKBACK)
    costs = {-1: 0}
    chain = {-1: None}
    for i in range(0, n):
        best_cost = costs[i - 1] + 1

        costs[i] = best_cost
        chain[i] = i - 1

        if i - 1 in forced:
            continue

        for j in range(i - 2, max(i - lookback, -2), -1):
            cost = costs[j] + 1

            if cost < best_cost and can_iup_in_between(deltas, coords, j, i, tolerance):
                costs[i] = best_cost = cost
                chain[i] = j

            if j in forced:
                break

    return chain, costs


def _rot_list(l: list, k: int):
    """Rotate list by k items forward.  Ie. item at position 0 will be
    at position k in returned list.  Negative k is allowed."""
    n = len(l)
    k %= n
    if not k:
        return l
    return l[n - k :] + l[: n - k]


def _rot_set(s: set, k: int, n: int):
    k %= n
    if not k:
        return s
    return {(v + k) % n for v in s}


def iup_contour_optimize(
    deltas: _DeltaSegment, coords: _PointSegment, tolerance: Real = 0.0
) -> _DeltaOrNoneSegment:
    """For contour with coordinates `coords`, optimize a set of delta
    values `deltas` within error `tolerance`.

    Returns delta vector that has most number of None items instead of
    the input delta.
    """

    n = len(deltas)

    # Get the easy cases out of the way:

    # If all are within tolerance distance of 0, encode nothing:
    if all(abs(complex(*p)) <= tolerance for p in deltas):
        return [None] * n

    # If there's exactly one point, return it:
    if n == 1:
        return deltas

    # If all deltas are exactly the same, return just one (the first one):
    d0 = deltas[0]
    if all(d0 == d for d in deltas):
        return [d0] + [None] * (n - 1)

    # Else, solve the general problem using Dynamic Programming.

    forced = _iup_contour_bound_forced_set(deltas, coords, tolerance)
    # The _iup_contour_optimize_dp() routine returns the optimal encoding
    # solution given the constraint that the last point is always encoded.
    # To remove this constraint, we use two different methods, depending on
    # whether forced set is non-empty or not:

    # Debugging: Make the next if always take the second branch and observe
    # if the font size changes (reduced); that would mean the forced-set
    # has members it should not have.
    if forced:
        # Forced set is non-empty: rotate the contour start point
        # such that the last point in the list is a forced point.
        k = (n - 1) - max(forced)
        assert k >= 0

        deltas = _rot_list(deltas, k)
        coords = _rot_list(coords, k)
        forced = _rot_set(forced, k, n)

        # Debugging: Pass a set() instead of forced variable to the next call
        # to exercise forced-set computation for under-counting.
        chain, costs = _iup_contour_optimize_dp(deltas, coords, forced, tolerance)

        # Assemble solution.
        solution = set()
        i = n - 1
        while i is not None:
            solution.add(i)
            i = chain[i]
        solution.remove(-1)

        # if not forced <= solution:
        # 	print("coord", coords)
        # 	print("deltas", deltas)
        # 	print("len", len(deltas))
        assert forced <= solution, (forced, solution)

        deltas = [deltas[i] if i in solution else None for i in range(n)]

        deltas = _rot_list(deltas, -k)
    else:
        # Repeat the contour an extra time, solve the new case, then look for solutions of the
        # circular n-length problem in the solution for new linear case.  I cannot prove that
        # this always produces the optimal solution...
        chain, costs = _iup_contour_optimize_dp(
            deltas + deltas, coords + coords, forced, tolerance, n
        )
        best_sol, best_cost = None, n + 1

        for start in range(n - 1, len(costs) - 1):
            # Assemble solution.
            solution = set()
            i = start
            while i > start - n:
                solution.add(i % n)
                i = chain[i]
            if i == start - n:
                cost = costs[start] - costs[start - n]
                if cost <= best_cost:
                    best_sol, best_cost = solution, cost

        # if not forced <= best_sol:
        # 	print("coord", coords)
        # 	print("deltas", deltas)
        # 	print("len", len(deltas))
        assert forced <= best_sol, (forced, best_sol)

        deltas = [deltas[i] if i in best_sol else None for i in range(n)]

    return deltas


def iup_delta_optimize(
    deltas: _DeltaSegment,
    coords: _PointSegment,
    ends: _Endpoints,
    tolerance: Real = 0.0,
) -> _DeltaOrNoneSegment:
    """For the outline given in `coords`, with contour endpoints given
    in sorted increasing order in `ends`, optimize a set of delta
    values `deltas` within error `tolerance`.

    Returns delta vector that has most number of None items instead of
    the input delta.
    """
    assert sorted(ends) == ends and len(coords) == (ends[-1] + 1 if ends else 0) + 4
    n = len(coords)
    ends = ends + [n - 4, n - 3, n - 2, n - 1]
    out = []
    start = 0
    for end in ends:
        contour = iup_contour_optimize(
            deltas[start : end + 1], coords[start : end + 1], tolerance
        )
        assert len(contour) == end - start + 1
        out.extend(contour)
        start = end + 1

    return out