File size: 43,036 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
"""psCharStrings.py -- module implementing various kinds of CharStrings:
CFF dictionary data and Type1/Type2 CharStrings.
"""

from fontTools.misc.fixedTools import (
    fixedToFloat,
    floatToFixed,
    floatToFixedToStr,
    strToFixedToFloat,
)
from fontTools.misc.textTools import bytechr, byteord, bytesjoin, strjoin
from fontTools.pens.boundsPen import BoundsPen
import struct
import logging


log = logging.getLogger(__name__)


def read_operator(self, b0, data, index):
    if b0 == 12:
        op = (b0, byteord(data[index]))
        index = index + 1
    else:
        op = b0
    try:
        operator = self.operators[op]
    except KeyError:
        return None, index
    value = self.handle_operator(operator)
    return value, index


def read_byte(self, b0, data, index):
    return b0 - 139, index


def read_smallInt1(self, b0, data, index):
    b1 = byteord(data[index])
    return (b0 - 247) * 256 + b1 + 108, index + 1


def read_smallInt2(self, b0, data, index):
    b1 = byteord(data[index])
    return -(b0 - 251) * 256 - b1 - 108, index + 1


def read_shortInt(self, b0, data, index):
    (value,) = struct.unpack(">h", data[index : index + 2])
    return value, index + 2


def read_longInt(self, b0, data, index):
    (value,) = struct.unpack(">l", data[index : index + 4])
    return value, index + 4


def read_fixed1616(self, b0, data, index):
    (value,) = struct.unpack(">l", data[index : index + 4])
    return fixedToFloat(value, precisionBits=16), index + 4


def read_reserved(self, b0, data, index):
    assert NotImplementedError
    return NotImplemented, index


def read_realNumber(self, b0, data, index):
    number = ""
    while True:
        b = byteord(data[index])
        index = index + 1
        nibble0 = (b & 0xF0) >> 4
        nibble1 = b & 0x0F
        if nibble0 == 0xF:
            break
        number = number + realNibbles[nibble0]
        if nibble1 == 0xF:
            break
        number = number + realNibbles[nibble1]
    return float(number), index


t1OperandEncoding = [None] * 256
t1OperandEncoding[0:32] = (32) * [read_operator]
t1OperandEncoding[32:247] = (247 - 32) * [read_byte]
t1OperandEncoding[247:251] = (251 - 247) * [read_smallInt1]
t1OperandEncoding[251:255] = (255 - 251) * [read_smallInt2]
t1OperandEncoding[255] = read_longInt
assert len(t1OperandEncoding) == 256

t2OperandEncoding = t1OperandEncoding[:]
t2OperandEncoding[28] = read_shortInt
t2OperandEncoding[255] = read_fixed1616

cffDictOperandEncoding = t2OperandEncoding[:]
cffDictOperandEncoding[29] = read_longInt
cffDictOperandEncoding[30] = read_realNumber
cffDictOperandEncoding[255] = read_reserved


realNibbles = [
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9",
    ".",
    "E",
    "E-",
    None,
    "-",
]
realNibblesDict = {v: i for i, v in enumerate(realNibbles)}

maxOpStack = 193


def buildOperatorDict(operatorList):
    oper = {}
    opc = {}
    for item in operatorList:
        if len(item) == 2:
            oper[item[0]] = item[1]
        else:
            oper[item[0]] = item[1:]
        if isinstance(item[0], tuple):
            opc[item[1]] = item[0]
        else:
            opc[item[1]] = (item[0],)
    return oper, opc


t2Operators = [
    # 	opcode		name
    (1, "hstem"),
    (3, "vstem"),
    (4, "vmoveto"),
    (5, "rlineto"),
    (6, "hlineto"),
    (7, "vlineto"),
    (8, "rrcurveto"),
    (10, "callsubr"),
    (11, "return"),
    (14, "endchar"),
    (15, "vsindex"),
    (16, "blend"),
    (18, "hstemhm"),
    (19, "hintmask"),
    (20, "cntrmask"),
    (21, "rmoveto"),
    (22, "hmoveto"),
    (23, "vstemhm"),
    (24, "rcurveline"),
    (25, "rlinecurve"),
    (26, "vvcurveto"),
    (27, "hhcurveto"),
    # 	(28,		'shortint'),  # not really an operator
    (29, "callgsubr"),
    (30, "vhcurveto"),
    (31, "hvcurveto"),
    ((12, 0), "ignore"),  # dotsection. Yes, there a few very early OTF/CFF
    # fonts with this deprecated operator. Just ignore it.
    ((12, 3), "and"),
    ((12, 4), "or"),
    ((12, 5), "not"),
    ((12, 8), "store"),
    ((12, 9), "abs"),
    ((12, 10), "add"),
    ((12, 11), "sub"),
    ((12, 12), "div"),
    ((12, 13), "load"),
    ((12, 14), "neg"),
    ((12, 15), "eq"),
    ((12, 18), "drop"),
    ((12, 20), "put"),
    ((12, 21), "get"),
    ((12, 22), "ifelse"),
    ((12, 23), "random"),
    ((12, 24), "mul"),
    ((12, 26), "sqrt"),
    ((12, 27), "dup"),
    ((12, 28), "exch"),
    ((12, 29), "index"),
    ((12, 30), "roll"),
    ((12, 34), "hflex"),
    ((12, 35), "flex"),
    ((12, 36), "hflex1"),
    ((12, 37), "flex1"),
]


def getIntEncoder(format):
    if format == "cff":
        twoByteOp = bytechr(28)
        fourByteOp = bytechr(29)
    elif format == "t1":
        twoByteOp = None
        fourByteOp = bytechr(255)
    else:
        assert format == "t2"
        twoByteOp = bytechr(28)
        fourByteOp = None

    def encodeInt(
        value,
        fourByteOp=fourByteOp,
        bytechr=bytechr,
        pack=struct.pack,
        unpack=struct.unpack,
        twoByteOp=twoByteOp,
    ):
        if -107 <= value <= 107:
            code = bytechr(value + 139)
        elif 108 <= value <= 1131:
            value = value - 108
            code = bytechr((value >> 8) + 247) + bytechr(value & 0xFF)
        elif -1131 <= value <= -108:
            value = -value - 108
            code = bytechr((value >> 8) + 251) + bytechr(value & 0xFF)
        elif twoByteOp is not None and -32768 <= value <= 32767:
            code = twoByteOp + pack(">h", value)
        elif fourByteOp is None:
            # Backwards compatible hack: due to a previous bug in FontTools,
            # 16.16 fixed numbers were written out as 4-byte ints. When
            # these numbers were small, they were wrongly written back as
            # small ints instead of 4-byte ints, breaking round-tripping.
            # This here workaround doesn't do it any better, since we can't
            # distinguish anymore between small ints that were supposed to
            # be small fixed numbers and small ints that were just small
            # ints. Hence the warning.
            log.warning(
                "4-byte T2 number got passed to the "
                "IntType handler. This should happen only when reading in "
                "old XML files.\n"
            )
            code = bytechr(255) + pack(">l", value)
        else:
            code = fourByteOp + pack(">l", value)
        return code

    return encodeInt


encodeIntCFF = getIntEncoder("cff")
encodeIntT1 = getIntEncoder("t1")
encodeIntT2 = getIntEncoder("t2")


def encodeFixed(f, pack=struct.pack):
    """For T2 only"""
    value = floatToFixed(f, precisionBits=16)
    if value & 0xFFFF == 0:  # check if the fractional part is zero
        return encodeIntT2(value >> 16)  # encode only the integer part
    else:
        return b"\xff" + pack(">l", value)  # encode the entire fixed point value


realZeroBytes = bytechr(30) + bytechr(0xF)


def encodeFloat(f):
    # For CFF only, used in cffLib
    if f == 0.0:  # 0.0 == +0.0 == -0.0
        return realZeroBytes
    # Note: 14 decimal digits seems to be the limitation for CFF real numbers
    # in macOS. However, we use 8 here to match the implementation of AFDKO.
    s = "%.8G" % f
    if s[:2] == "0.":
        s = s[1:]
    elif s[:3] == "-0.":
        s = "-" + s[2:]
    elif s.endswith("000"):
        significantDigits = s.rstrip("0")
        s = "%sE%d" % (significantDigits, len(s) - len(significantDigits))
    else:
        dotIndex = s.find(".")
        eIndex = s.find("E")
        if dotIndex != -1 and eIndex != -1:
            integerPart = s[:dotIndex]
            fractionalPart = s[dotIndex + 1 : eIndex]
            exponent = int(s[eIndex + 1 :])
            newExponent = exponent - len(fractionalPart)
            if newExponent == 1:
                s = "%s%s0" % (integerPart, fractionalPart)
            else:
                s = "%s%sE%d" % (integerPart, fractionalPart, newExponent)
    if s.startswith((".0", "-.0")):
        sign, s = s.split(".", 1)
        s = "%s%sE-%d" % (sign, s.lstrip("0"), len(s))
    nibbles = []
    while s:
        c = s[0]
        s = s[1:]
        if c == "E":
            c2 = s[:1]
            if c2 == "-":
                s = s[1:]
                c = "E-"
            elif c2 == "+":
                s = s[1:]
            if s.startswith("0"):
                s = s[1:]
        nibbles.append(realNibblesDict[c])
    nibbles.append(0xF)
    if len(nibbles) % 2:
        nibbles.append(0xF)
    d = bytechr(30)
    for i in range(0, len(nibbles), 2):
        d = d + bytechr(nibbles[i] << 4 | nibbles[i + 1])
    return d


class CharStringCompileError(Exception):
    pass


class SimpleT2Decompiler(object):
    def __init__(self, localSubrs, globalSubrs, private=None, blender=None):
        self.localSubrs = localSubrs
        self.localBias = calcSubrBias(localSubrs)
        self.globalSubrs = globalSubrs
        self.globalBias = calcSubrBias(globalSubrs)
        self.private = private
        self.blender = blender
        self.reset()

    def reset(self):
        self.callingStack = []
        self.operandStack = []
        self.hintCount = 0
        self.hintMaskBytes = 0
        self.numRegions = 0
        self.vsIndex = 0

    def execute(self, charString):
        self.callingStack.append(charString)
        needsDecompilation = charString.needsDecompilation()
        if needsDecompilation:
            program = []
            pushToProgram = program.append
        else:
            pushToProgram = lambda x: None
        pushToStack = self.operandStack.append
        index = 0
        while True:
            token, isOperator, index = charString.getToken(index)
            if token is None:
                break  # we're done!
            pushToProgram(token)
            if isOperator:
                handlerName = "op_" + token
                handler = getattr(self, handlerName, None)
                if handler is not None:
                    rv = handler(index)
                    if rv:
                        hintMaskBytes, index = rv
                        pushToProgram(hintMaskBytes)
                else:
                    self.popall()
            else:
                pushToStack(token)
        if needsDecompilation:
            charString.setProgram(program)
        del self.callingStack[-1]

    def pop(self):
        value = self.operandStack[-1]
        del self.operandStack[-1]
        return value

    def popall(self):
        stack = self.operandStack[:]
        self.operandStack[:] = []
        return stack

    def push(self, value):
        self.operandStack.append(value)

    def op_return(self, index):
        if self.operandStack:
            pass

    def op_endchar(self, index):
        pass

    def op_ignore(self, index):
        pass

    def op_callsubr(self, index):
        subrIndex = self.pop()
        subr = self.localSubrs[subrIndex + self.localBias]
        self.execute(subr)

    def op_callgsubr(self, index):
        subrIndex = self.pop()
        subr = self.globalSubrs[subrIndex + self.globalBias]
        self.execute(subr)

    def op_hstem(self, index):
        self.countHints()

    def op_vstem(self, index):
        self.countHints()

    def op_hstemhm(self, index):
        self.countHints()

    def op_vstemhm(self, index):
        self.countHints()

    def op_hintmask(self, index):
        if not self.hintMaskBytes:
            self.countHints()
            self.hintMaskBytes = (self.hintCount + 7) // 8
        hintMaskBytes, index = self.callingStack[-1].getBytes(index, self.hintMaskBytes)
        return hintMaskBytes, index

    op_cntrmask = op_hintmask

    def countHints(self):
        args = self.popall()
        self.hintCount = self.hintCount + len(args) // 2

    # misc
    def op_and(self, index):
        raise NotImplementedError

    def op_or(self, index):
        raise NotImplementedError

    def op_not(self, index):
        raise NotImplementedError

    def op_store(self, index):
        raise NotImplementedError

    def op_abs(self, index):
        raise NotImplementedError

    def op_add(self, index):
        raise NotImplementedError

    def op_sub(self, index):
        raise NotImplementedError

    def op_div(self, index):
        raise NotImplementedError

    def op_load(self, index):
        raise NotImplementedError

    def op_neg(self, index):
        raise NotImplementedError

    def op_eq(self, index):
        raise NotImplementedError

    def op_drop(self, index):
        raise NotImplementedError

    def op_put(self, index):
        raise NotImplementedError

    def op_get(self, index):
        raise NotImplementedError

    def op_ifelse(self, index):
        raise NotImplementedError

    def op_random(self, index):
        raise NotImplementedError

    def op_mul(self, index):
        raise NotImplementedError

    def op_sqrt(self, index):
        raise NotImplementedError

    def op_dup(self, index):
        raise NotImplementedError

    def op_exch(self, index):
        raise NotImplementedError

    def op_index(self, index):
        raise NotImplementedError

    def op_roll(self, index):
        raise NotImplementedError

    def op_blend(self, index):
        if self.numRegions == 0:
            self.numRegions = self.private.getNumRegions()
        numBlends = self.pop()
        numOps = numBlends * (self.numRegions + 1)
        if self.blender is None:
            del self.operandStack[
                -(numOps - numBlends) :
            ]  # Leave the default operands on the stack.
        else:
            argi = len(self.operandStack) - numOps
            end_args = tuplei = argi + numBlends
            while argi < end_args:
                next_ti = tuplei + self.numRegions
                deltas = self.operandStack[tuplei:next_ti]
                delta = self.blender(self.vsIndex, deltas)
                self.operandStack[argi] += delta
                tuplei = next_ti
                argi += 1
            self.operandStack[end_args:] = []

    def op_vsindex(self, index):
        vi = self.pop()
        self.vsIndex = vi
        self.numRegions = self.private.getNumRegions(vi)


t1Operators = [
    # 	opcode		name
    (1, "hstem"),
    (3, "vstem"),
    (4, "vmoveto"),
    (5, "rlineto"),
    (6, "hlineto"),
    (7, "vlineto"),
    (8, "rrcurveto"),
    (9, "closepath"),
    (10, "callsubr"),
    (11, "return"),
    (13, "hsbw"),
    (14, "endchar"),
    (21, "rmoveto"),
    (22, "hmoveto"),
    (30, "vhcurveto"),
    (31, "hvcurveto"),
    ((12, 0), "dotsection"),
    ((12, 1), "vstem3"),
    ((12, 2), "hstem3"),
    ((12, 6), "seac"),
    ((12, 7), "sbw"),
    ((12, 12), "div"),
    ((12, 16), "callothersubr"),
    ((12, 17), "pop"),
    ((12, 33), "setcurrentpoint"),
]


class T2WidthExtractor(SimpleT2Decompiler):
    def __init__(
        self,
        localSubrs,
        globalSubrs,
        nominalWidthX,
        defaultWidthX,
        private=None,
        blender=None,
    ):
        SimpleT2Decompiler.__init__(self, localSubrs, globalSubrs, private, blender)
        self.nominalWidthX = nominalWidthX
        self.defaultWidthX = defaultWidthX

    def reset(self):
        SimpleT2Decompiler.reset(self)
        self.gotWidth = 0
        self.width = 0

    def popallWidth(self, evenOdd=0):
        args = self.popall()
        if not self.gotWidth:
            if evenOdd ^ (len(args) % 2):
                # For CFF2 charstrings, this should never happen
                assert (
                    self.defaultWidthX is not None
                ), "CFF2 CharStrings must not have an initial width value"
                self.width = self.nominalWidthX + args[0]
                args = args[1:]
            else:
                self.width = self.defaultWidthX
            self.gotWidth = 1
        return args

    def countHints(self):
        args = self.popallWidth()
        self.hintCount = self.hintCount + len(args) // 2

    def op_rmoveto(self, index):
        self.popallWidth()

    def op_hmoveto(self, index):
        self.popallWidth(1)

    def op_vmoveto(self, index):
        self.popallWidth(1)

    def op_endchar(self, index):
        self.popallWidth()


class T2OutlineExtractor(T2WidthExtractor):
    def __init__(
        self,
        pen,
        localSubrs,
        globalSubrs,
        nominalWidthX,
        defaultWidthX,
        private=None,
        blender=None,
    ):
        T2WidthExtractor.__init__(
            self,
            localSubrs,
            globalSubrs,
            nominalWidthX,
            defaultWidthX,
            private,
            blender,
        )
        self.pen = pen
        self.subrLevel = 0

    def reset(self):
        T2WidthExtractor.reset(self)
        self.currentPoint = (0, 0)
        self.sawMoveTo = 0
        self.subrLevel = 0

    def execute(self, charString):
        self.subrLevel += 1
        super().execute(charString)
        self.subrLevel -= 1
        if self.subrLevel == 0:
            self.endPath()

    def _nextPoint(self, point):
        x, y = self.currentPoint
        point = x + point[0], y + point[1]
        self.currentPoint = point
        return point

    def rMoveTo(self, point):
        self.pen.moveTo(self._nextPoint(point))
        self.sawMoveTo = 1

    def rLineTo(self, point):
        if not self.sawMoveTo:
            self.rMoveTo((0, 0))
        self.pen.lineTo(self._nextPoint(point))

    def rCurveTo(self, pt1, pt2, pt3):
        if not self.sawMoveTo:
            self.rMoveTo((0, 0))
        nextPoint = self._nextPoint
        self.pen.curveTo(nextPoint(pt1), nextPoint(pt2), nextPoint(pt3))

    def closePath(self):
        if self.sawMoveTo:
            self.pen.closePath()
        self.sawMoveTo = 0

    def endPath(self):
        # In T2 there are no open paths, so always do a closePath when
        # finishing a sub path. We avoid spurious calls to closePath()
        # because its a real T1 op we're emulating in T2 whereas
        # endPath() is just a means to that emulation
        if self.sawMoveTo:
            self.closePath()

    #
    # hint operators
    #
    # def op_hstem(self, index):
    # 	self.countHints()
    # def op_vstem(self, index):
    # 	self.countHints()
    # def op_hstemhm(self, index):
    # 	self.countHints()
    # def op_vstemhm(self, index):
    # 	self.countHints()
    # def op_hintmask(self, index):
    # 	self.countHints()
    # def op_cntrmask(self, index):
    # 	self.countHints()

    #
    # path constructors, moveto
    #
    def op_rmoveto(self, index):
        self.endPath()
        self.rMoveTo(self.popallWidth())

    def op_hmoveto(self, index):
        self.endPath()
        self.rMoveTo((self.popallWidth(1)[0], 0))

    def op_vmoveto(self, index):
        self.endPath()
        self.rMoveTo((0, self.popallWidth(1)[0]))

    def op_endchar(self, index):
        self.endPath()
        args = self.popallWidth()
        if args:
            from fontTools.encodings.StandardEncoding import StandardEncoding

            # endchar can do seac accent bulding; The T2 spec says it's deprecated,
            # but recent software that shall remain nameless does output it.
            adx, ady, bchar, achar = args
            baseGlyph = StandardEncoding[bchar]
            self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
            accentGlyph = StandardEncoding[achar]
            self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))

    #
    # path constructors, lines
    #
    def op_rlineto(self, index):
        args = self.popall()
        for i in range(0, len(args), 2):
            point = args[i : i + 2]
            self.rLineTo(point)

    def op_hlineto(self, index):
        self.alternatingLineto(1)

    def op_vlineto(self, index):
        self.alternatingLineto(0)

    #
    # path constructors, curves
    #
    def op_rrcurveto(self, index):
        """{dxa dya dxb dyb dxc dyc}+ rrcurveto"""
        args = self.popall()
        for i in range(0, len(args), 6):
            (
                dxa,
                dya,
                dxb,
                dyb,
                dxc,
                dyc,
            ) = args[i : i + 6]
            self.rCurveTo((dxa, dya), (dxb, dyb), (dxc, dyc))

    def op_rcurveline(self, index):
        """{dxa dya dxb dyb dxc dyc}+ dxd dyd rcurveline"""
        args = self.popall()
        for i in range(0, len(args) - 2, 6):
            dxb, dyb, dxc, dyc, dxd, dyd = args[i : i + 6]
            self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))
        self.rLineTo(args[-2:])

    def op_rlinecurve(self, index):
        """{dxa dya}+ dxb dyb dxc dyc dxd dyd rlinecurve"""
        args = self.popall()
        lineArgs = args[:-6]
        for i in range(0, len(lineArgs), 2):
            self.rLineTo(lineArgs[i : i + 2])
        dxb, dyb, dxc, dyc, dxd, dyd = args[-6:]
        self.rCurveTo((dxb, dyb), (dxc, dyc), (dxd, dyd))

    def op_vvcurveto(self, index):
        "dx1? {dya dxb dyb dyc}+ vvcurveto"
        args = self.popall()
        if len(args) % 2:
            dx1 = args[0]
            args = args[1:]
        else:
            dx1 = 0
        for i in range(0, len(args), 4):
            dya, dxb, dyb, dyc = args[i : i + 4]
            self.rCurveTo((dx1, dya), (dxb, dyb), (0, dyc))
            dx1 = 0

    def op_hhcurveto(self, index):
        """dy1? {dxa dxb dyb dxc}+ hhcurveto"""
        args = self.popall()
        if len(args) % 2:
            dy1 = args[0]
            args = args[1:]
        else:
            dy1 = 0
        for i in range(0, len(args), 4):
            dxa, dxb, dyb, dxc = args[i : i + 4]
            self.rCurveTo((dxa, dy1), (dxb, dyb), (dxc, 0))
            dy1 = 0

    def op_vhcurveto(self, index):
        """dy1 dx2 dy2 dx3 {dxa dxb dyb dyc dyd dxe dye dxf}* dyf? vhcurveto (30)
        {dya dxb dyb dxc dxd dxe dye dyf}+ dxf? vhcurveto
        """
        args = self.popall()
        while args:
            args = self.vcurveto(args)
            if args:
                args = self.hcurveto(args)

    def op_hvcurveto(self, index):
        """dx1 dx2 dy2 dy3 {dya dxb dyb dxc dxd dxe dye dyf}* dxf?
        {dxa dxb dyb dyc dyd dxe dye dxf}+ dyf?
        """
        args = self.popall()
        while args:
            args = self.hcurveto(args)
            if args:
                args = self.vcurveto(args)

    #
    # path constructors, flex
    #
    def op_hflex(self, index):
        dx1, dx2, dy2, dx3, dx4, dx5, dx6 = self.popall()
        dy1 = dy3 = dy4 = dy6 = 0
        dy5 = -dy2
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_flex(self, index):
        dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, dx6, dy6, fd = self.popall()
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_hflex1(self, index):
        dx1, dy1, dx2, dy2, dx3, dx4, dx5, dy5, dx6 = self.popall()
        dy3 = dy4 = 0
        dy6 = -(dy1 + dy2 + dy3 + dy4 + dy5)

        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    def op_flex1(self, index):
        dx1, dy1, dx2, dy2, dx3, dy3, dx4, dy4, dx5, dy5, d6 = self.popall()
        dx = dx1 + dx2 + dx3 + dx4 + dx5
        dy = dy1 + dy2 + dy3 + dy4 + dy5
        if abs(dx) > abs(dy):
            dx6 = d6
            dy6 = -dy
        else:
            dx6 = -dx
            dy6 = d6
        self.rCurveTo((dx1, dy1), (dx2, dy2), (dx3, dy3))
        self.rCurveTo((dx4, dy4), (dx5, dy5), (dx6, dy6))

    # misc
    def op_and(self, index):
        raise NotImplementedError

    def op_or(self, index):
        raise NotImplementedError

    def op_not(self, index):
        raise NotImplementedError

    def op_store(self, index):
        raise NotImplementedError

    def op_abs(self, index):
        raise NotImplementedError

    def op_add(self, index):
        raise NotImplementedError

    def op_sub(self, index):
        raise NotImplementedError

    def op_div(self, index):
        num2 = self.pop()
        num1 = self.pop()
        d1 = num1 // num2
        d2 = num1 / num2
        if d1 == d2:
            self.push(d1)
        else:
            self.push(d2)

    def op_load(self, index):
        raise NotImplementedError

    def op_neg(self, index):
        raise NotImplementedError

    def op_eq(self, index):
        raise NotImplementedError

    def op_drop(self, index):
        raise NotImplementedError

    def op_put(self, index):
        raise NotImplementedError

    def op_get(self, index):
        raise NotImplementedError

    def op_ifelse(self, index):
        raise NotImplementedError

    def op_random(self, index):
        raise NotImplementedError

    def op_mul(self, index):
        raise NotImplementedError

    def op_sqrt(self, index):
        raise NotImplementedError

    def op_dup(self, index):
        raise NotImplementedError

    def op_exch(self, index):
        raise NotImplementedError

    def op_index(self, index):
        raise NotImplementedError

    def op_roll(self, index):
        raise NotImplementedError

    #
    # miscellaneous helpers
    #
    def alternatingLineto(self, isHorizontal):
        args = self.popall()
        for arg in args:
            if isHorizontal:
                point = (arg, 0)
            else:
                point = (0, arg)
            self.rLineTo(point)
            isHorizontal = not isHorizontal

    def vcurveto(self, args):
        dya, dxb, dyb, dxc = args[:4]
        args = args[4:]
        if len(args) == 1:
            dyc = args[0]
            args = []
        else:
            dyc = 0
        self.rCurveTo((0, dya), (dxb, dyb), (dxc, dyc))
        return args

    def hcurveto(self, args):
        dxa, dxb, dyb, dyc = args[:4]
        args = args[4:]
        if len(args) == 1:
            dxc = args[0]
            args = []
        else:
            dxc = 0
        self.rCurveTo((dxa, 0), (dxb, dyb), (dxc, dyc))
        return args


class T1OutlineExtractor(T2OutlineExtractor):
    def __init__(self, pen, subrs):
        self.pen = pen
        self.subrs = subrs
        self.reset()

    def reset(self):
        self.flexing = 0
        self.width = 0
        self.sbx = 0
        T2OutlineExtractor.reset(self)

    def endPath(self):
        if self.sawMoveTo:
            self.pen.endPath()
        self.sawMoveTo = 0

    def popallWidth(self, evenOdd=0):
        return self.popall()

    def exch(self):
        stack = self.operandStack
        stack[-1], stack[-2] = stack[-2], stack[-1]

    #
    # path constructors
    #
    def op_rmoveto(self, index):
        if self.flexing:
            return
        self.endPath()
        self.rMoveTo(self.popall())

    def op_hmoveto(self, index):
        if self.flexing:
            # We must add a parameter to the stack if we are flexing
            self.push(0)
            return
        self.endPath()
        self.rMoveTo((self.popall()[0], 0))

    def op_vmoveto(self, index):
        if self.flexing:
            # We must add a parameter to the stack if we are flexing
            self.push(0)
            self.exch()
            return
        self.endPath()
        self.rMoveTo((0, self.popall()[0]))

    def op_closepath(self, index):
        self.closePath()

    def op_setcurrentpoint(self, index):
        args = self.popall()
        x, y = args
        self.currentPoint = x, y

    def op_endchar(self, index):
        self.endPath()

    def op_hsbw(self, index):
        sbx, wx = self.popall()
        self.width = wx
        self.sbx = sbx
        self.currentPoint = sbx, self.currentPoint[1]

    def op_sbw(self, index):
        self.popall()  # XXX

    #
    def op_callsubr(self, index):
        subrIndex = self.pop()
        subr = self.subrs[subrIndex]
        self.execute(subr)

    def op_callothersubr(self, index):
        subrIndex = self.pop()
        nArgs = self.pop()
        # print nArgs, subrIndex, "callothersubr"
        if subrIndex == 0 and nArgs == 3:
            self.doFlex()
            self.flexing = 0
        elif subrIndex == 1 and nArgs == 0:
            self.flexing = 1
        # ignore...

    def op_pop(self, index):
        pass  # ignore...

    def doFlex(self):
        finaly = self.pop()
        finalx = self.pop()
        self.pop()  # flex height is unused

        p3y = self.pop()
        p3x = self.pop()
        bcp4y = self.pop()
        bcp4x = self.pop()
        bcp3y = self.pop()
        bcp3x = self.pop()
        p2y = self.pop()
        p2x = self.pop()
        bcp2y = self.pop()
        bcp2x = self.pop()
        bcp1y = self.pop()
        bcp1x = self.pop()
        rpy = self.pop()
        rpx = self.pop()

        # call rrcurveto
        self.push(bcp1x + rpx)
        self.push(bcp1y + rpy)
        self.push(bcp2x)
        self.push(bcp2y)
        self.push(p2x)
        self.push(p2y)
        self.op_rrcurveto(None)

        # call rrcurveto
        self.push(bcp3x)
        self.push(bcp3y)
        self.push(bcp4x)
        self.push(bcp4y)
        self.push(p3x)
        self.push(p3y)
        self.op_rrcurveto(None)

        # Push back final coords so subr 0 can find them
        self.push(finalx)
        self.push(finaly)

    def op_dotsection(self, index):
        self.popall()  # XXX

    def op_hstem3(self, index):
        self.popall()  # XXX

    def op_seac(self, index):
        "asb adx ady bchar achar seac"
        from fontTools.encodings.StandardEncoding import StandardEncoding

        asb, adx, ady, bchar, achar = self.popall()
        baseGlyph = StandardEncoding[bchar]
        self.pen.addComponent(baseGlyph, (1, 0, 0, 1, 0, 0))
        accentGlyph = StandardEncoding[achar]
        adx = adx + self.sbx - asb  # seac weirdness
        self.pen.addComponent(accentGlyph, (1, 0, 0, 1, adx, ady))

    def op_vstem3(self, index):
        self.popall()  # XXX


class T2CharString(object):
    operandEncoding = t2OperandEncoding
    operators, opcodes = buildOperatorDict(t2Operators)
    decompilerClass = SimpleT2Decompiler
    outlineExtractor = T2OutlineExtractor

    def __init__(self, bytecode=None, program=None, private=None, globalSubrs=None):
        if program is None:
            program = []
        self.bytecode = bytecode
        self.program = program
        self.private = private
        self.globalSubrs = globalSubrs if globalSubrs is not None else []
        self._cur_vsindex = None

    def getNumRegions(self, vsindex=None):
        pd = self.private
        assert pd is not None
        if vsindex is not None:
            self._cur_vsindex = vsindex
        elif self._cur_vsindex is None:
            self._cur_vsindex = pd.vsindex if hasattr(pd, "vsindex") else 0
        return pd.getNumRegions(self._cur_vsindex)

    def __repr__(self):
        if self.bytecode is None:
            return "<%s (source) at %x>" % (self.__class__.__name__, id(self))
        else:
            return "<%s (bytecode) at %x>" % (self.__class__.__name__, id(self))

    def getIntEncoder(self):
        return encodeIntT2

    def getFixedEncoder(self):
        return encodeFixed

    def decompile(self):
        if not self.needsDecompilation():
            return
        subrs = getattr(self.private, "Subrs", [])
        decompiler = self.decompilerClass(subrs, self.globalSubrs, self.private)
        decompiler.execute(self)

    def draw(self, pen, blender=None):
        subrs = getattr(self.private, "Subrs", [])
        extractor = self.outlineExtractor(
            pen,
            subrs,
            self.globalSubrs,
            self.private.nominalWidthX,
            self.private.defaultWidthX,
            self.private,
            blender,
        )
        extractor.execute(self)
        self.width = extractor.width

    def calcBounds(self, glyphSet):
        boundsPen = BoundsPen(glyphSet)
        self.draw(boundsPen)
        return boundsPen.bounds

    def compile(self, isCFF2=False):
        if self.bytecode is not None:
            return
        opcodes = self.opcodes
        program = self.program

        if isCFF2:
            # If present, remove return and endchar operators.
            if program and program[-1] in ("return", "endchar"):
                program = program[:-1]
        elif program and not isinstance(program[-1], str):
            raise CharStringCompileError(
                "T2CharString or Subr has items on the stack after last operator."
            )

        bytecode = []
        encodeInt = self.getIntEncoder()
        encodeFixed = self.getFixedEncoder()
        i = 0
        end = len(program)
        while i < end:
            token = program[i]
            i = i + 1
            if isinstance(token, str):
                try:
                    bytecode.extend(bytechr(b) for b in opcodes[token])
                except KeyError:
                    raise CharStringCompileError("illegal operator: %s" % token)
                if token in ("hintmask", "cntrmask"):
                    bytecode.append(program[i])  # hint mask
                    i = i + 1
            elif isinstance(token, int):
                bytecode.append(encodeInt(token))
            elif isinstance(token, float):
                bytecode.append(encodeFixed(token))
            else:
                assert 0, "unsupported type: %s" % type(token)
        try:
            bytecode = bytesjoin(bytecode)
        except TypeError:
            log.error(bytecode)
            raise
        self.setBytecode(bytecode)

    def needsDecompilation(self):
        return self.bytecode is not None

    def setProgram(self, program):
        self.program = program
        self.bytecode = None

    def setBytecode(self, bytecode):
        self.bytecode = bytecode
        self.program = None

    def getToken(self, index, len=len, byteord=byteord, isinstance=isinstance):
        if self.bytecode is not None:
            if index >= len(self.bytecode):
                return None, 0, 0
            b0 = byteord(self.bytecode[index])
            index = index + 1
            handler = self.operandEncoding[b0]
            token, index = handler(self, b0, self.bytecode, index)
        else:
            if index >= len(self.program):
                return None, 0, 0
            token = self.program[index]
            index = index + 1
        isOperator = isinstance(token, str)
        return token, isOperator, index

    def getBytes(self, index, nBytes):
        if self.bytecode is not None:
            newIndex = index + nBytes
            bytes = self.bytecode[index:newIndex]
            index = newIndex
        else:
            bytes = self.program[index]
            index = index + 1
        assert len(bytes) == nBytes
        return bytes, index

    def handle_operator(self, operator):
        return operator

    def toXML(self, xmlWriter, ttFont=None):
        from fontTools.misc.textTools import num2binary

        if self.bytecode is not None:
            xmlWriter.dumphex(self.bytecode)
        else:
            index = 0
            args = []
            while True:
                token, isOperator, index = self.getToken(index)
                if token is None:
                    break
                if isOperator:
                    if token in ("hintmask", "cntrmask"):
                        hintMask, isOperator, index = self.getToken(index)
                        bits = []
                        for byte in hintMask:
                            bits.append(num2binary(byteord(byte), 8))
                        hintMask = strjoin(bits)
                        line = " ".join(args + [token, hintMask])
                    else:
                        line = " ".join(args + [token])
                    xmlWriter.write(line)
                    xmlWriter.newline()
                    args = []
                else:
                    if isinstance(token, float):
                        token = floatToFixedToStr(token, precisionBits=16)
                    else:
                        token = str(token)
                    args.append(token)
            if args:
                # NOTE: only CFF2 charstrings/subrs can have numeric arguments on
                # the stack after the last operator. Compiling this would fail if
                # this is part of CFF 1.0 table.
                line = " ".join(args)
                xmlWriter.write(line)

    def fromXML(self, name, attrs, content):
        from fontTools.misc.textTools import binary2num, readHex

        if attrs.get("raw"):
            self.setBytecode(readHex(content))
            return
        content = strjoin(content)
        content = content.split()
        program = []
        end = len(content)
        i = 0
        while i < end:
            token = content[i]
            i = i + 1
            try:
                token = int(token)
            except ValueError:
                try:
                    token = strToFixedToFloat(token, precisionBits=16)
                except ValueError:
                    program.append(token)
                    if token in ("hintmask", "cntrmask"):
                        mask = content[i]
                        maskBytes = b""
                        for j in range(0, len(mask), 8):
                            maskBytes = maskBytes + bytechr(binary2num(mask[j : j + 8]))
                        program.append(maskBytes)
                        i = i + 1
                else:
                    program.append(token)
            else:
                program.append(token)
        self.setProgram(program)


class T1CharString(T2CharString):
    operandEncoding = t1OperandEncoding
    operators, opcodes = buildOperatorDict(t1Operators)

    def __init__(self, bytecode=None, program=None, subrs=None):
        super().__init__(bytecode, program)
        self.subrs = subrs

    def getIntEncoder(self):
        return encodeIntT1

    def getFixedEncoder(self):
        def encodeFixed(value):
            raise TypeError("Type 1 charstrings don't support floating point operands")

    def decompile(self):
        if self.bytecode is None:
            return
        program = []
        index = 0
        while True:
            token, isOperator, index = self.getToken(index)
            if token is None:
                break
            program.append(token)
        self.setProgram(program)

    def draw(self, pen):
        extractor = T1OutlineExtractor(pen, self.subrs)
        extractor.execute(self)
        self.width = extractor.width


class DictDecompiler(object):
    operandEncoding = cffDictOperandEncoding

    def __init__(self, strings, parent=None):
        self.stack = []
        self.strings = strings
        self.dict = {}
        self.parent = parent

    def getDict(self):
        assert len(self.stack) == 0, "non-empty stack"
        return self.dict

    def decompile(self, data):
        index = 0
        lenData = len(data)
        push = self.stack.append
        while index < lenData:
            b0 = byteord(data[index])
            index = index + 1
            handler = self.operandEncoding[b0]
            value, index = handler(self, b0, data, index)
            if value is not None:
                push(value)

    def pop(self):
        value = self.stack[-1]
        del self.stack[-1]
        return value

    def popall(self):
        args = self.stack[:]
        del self.stack[:]
        return args

    def handle_operator(self, operator):
        operator, argType = operator
        if isinstance(argType, tuple):
            value = ()
            for i in range(len(argType) - 1, -1, -1):
                arg = argType[i]
                arghandler = getattr(self, "arg_" + arg)
                value = (arghandler(operator),) + value
        else:
            arghandler = getattr(self, "arg_" + argType)
            value = arghandler(operator)
        if operator == "blend":
            self.stack.extend(value)
        else:
            self.dict[operator] = value

    def arg_number(self, name):
        if isinstance(self.stack[0], list):
            out = self.arg_blend_number(self.stack)
        else:
            out = self.pop()
        return out

    def arg_blend_number(self, name):
        out = []
        blendArgs = self.pop()
        numMasters = len(blendArgs)
        out.append(blendArgs)
        out.append("blend")
        dummy = self.popall()
        return blendArgs

    def arg_SID(self, name):
        return self.strings[self.pop()]

    def arg_array(self, name):
        return self.popall()

    def arg_blendList(self, name):
        """
        There may be non-blend args at the top of the stack. We first calculate
        where the blend args start in the stack. These are the last
        numMasters*numBlends) +1 args.
        The blend args starts with numMasters relative coordinate values, the  BlueValues in the list from the default master font. This is followed by
        numBlends list of values. Each of  value in one of these lists is the
        Variable Font delta for the matching region.

        We re-arrange this to be a list of numMaster entries. Each entry starts with the corresponding default font relative value, and is followed by
        the delta values. We then convert the default values, the first item in each entry, to an absolute value.
        """
        vsindex = self.dict.get("vsindex", 0)
        numMasters = (
            self.parent.getNumRegions(vsindex) + 1
        )  # only a PrivateDict has blended ops.
        numBlends = self.pop()
        args = self.popall()
        numArgs = len(args)
        # The spec says that there should be no non-blended Blue Values,.
        assert numArgs == numMasters * numBlends
        value = [None] * numBlends
        numDeltas = numMasters - 1
        i = 0
        prevVal = 0
        while i < numBlends:
            newVal = args[i] + prevVal
            prevVal = newVal
            masterOffset = numBlends + (i * numDeltas)
            blendList = [newVal] + args[masterOffset : masterOffset + numDeltas]
            value[i] = blendList
            i += 1
        return value

    def arg_delta(self, name):
        valueList = self.popall()
        out = []
        if valueList and isinstance(valueList[0], list):
            # arg_blendList() has already converted these to absolute values.
            out = valueList
        else:
            current = 0
            for v in valueList:
                current = current + v
                out.append(current)
        return out


def calcSubrBias(subrs):
    nSubrs = len(subrs)
    if nSubrs < 1240:
        bias = 107
    elif nSubrs < 33900:
        bias = 1131
    else:
        bias = 32768
    return bias