File size: 30,533 Bytes
b72ab63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
# -*- coding: utf-8 -*-

"""T2CharString operator specializer and generalizer.

PostScript glyph drawing operations can be expressed in multiple different
ways. For example, as well as the ``lineto`` operator, there is also a
``hlineto`` operator which draws a horizontal line, removing the need to
specify a ``dx`` coordinate, and a ``vlineto`` operator which draws a
vertical line, removing the need to specify a ``dy`` coordinate. As well
as decompiling :class:`fontTools.misc.psCharStrings.T2CharString` objects
into lists of operations, this module allows for conversion between general
and specific forms of the operation.

"""

from fontTools.cffLib import maxStackLimit


def stringToProgram(string):
    if isinstance(string, str):
        string = string.split()
    program = []
    for token in string:
        try:
            token = int(token)
        except ValueError:
            try:
                token = float(token)
            except ValueError:
                pass
        program.append(token)
    return program


def programToString(program):
    return " ".join(str(x) for x in program)


def programToCommands(program, getNumRegions=None):
    """Takes a T2CharString program list and returns list of commands.
    Each command is a two-tuple of commandname,arg-list.  The commandname might
    be empty string if no commandname shall be emitted (used for glyph width,
    hintmask/cntrmask argument, as well as stray arguments at the end of the
    program (🤷).
    'getNumRegions' may be None, or a callable object. It must return the
    number of regions. 'getNumRegions' takes a single argument, vsindex. It
    returns the numRegions for the vsindex.
    The Charstring may or may not start with a width value. If the first
    non-blend operator has an odd number of arguments, then the first argument is
    a width, and is popped off. This is complicated with blend operators, as
    there may be more than one before the first hint or moveto operator, and each
    one reduces several arguments to just one list argument. We have to sum the
    number of arguments that are not part of the blend arguments, and all the
    'numBlends' values. We could instead have said that by definition, if there
    is a blend operator, there is no width value, since CFF2 Charstrings don't
    have width values. I discussed this with Behdad, and we are allowing for an
    initial width value in this case because developers may assemble a CFF2
    charstring from CFF Charstrings, which could have width values.
    """

    seenWidthOp = False
    vsIndex = 0
    lenBlendStack = 0
    lastBlendIndex = 0
    commands = []
    stack = []
    it = iter(program)

    for token in it:
        if not isinstance(token, str):
            stack.append(token)
            continue

        if token == "blend":
            assert getNumRegions is not None
            numSourceFonts = 1 + getNumRegions(vsIndex)
            # replace the blend op args on the stack with a single list
            # containing all the blend op args.
            numBlends = stack[-1]
            numBlendArgs = numBlends * numSourceFonts + 1
            # replace first blend op by a list of the blend ops.
            stack[-numBlendArgs:] = [stack[-numBlendArgs:]]
            lenBlendStack += numBlends + len(stack) - 1
            lastBlendIndex = len(stack)
            # if a blend op exists, this is or will be a CFF2 charstring.
            continue

        elif token == "vsindex":
            vsIndex = stack[-1]
            assert type(vsIndex) is int

        elif (not seenWidthOp) and token in {
            "hstem",
            "hstemhm",
            "vstem",
            "vstemhm",
            "cntrmask",
            "hintmask",
            "hmoveto",
            "vmoveto",
            "rmoveto",
            "endchar",
        }:
            seenWidthOp = True
            parity = token in {"hmoveto", "vmoveto"}
            if lenBlendStack:
                # lenBlendStack has the number of args represented by the last blend
                # arg and all the preceding args. We need to now add the number of
                # args following the last blend arg.
                numArgs = lenBlendStack + len(stack[lastBlendIndex:])
            else:
                numArgs = len(stack)
            if numArgs and (numArgs % 2) ^ parity:
                width = stack.pop(0)
                commands.append(("", [width]))

        if token in {"hintmask", "cntrmask"}:
            if stack:
                commands.append(("", stack))
            commands.append((token, []))
            commands.append(("", [next(it)]))
        else:
            commands.append((token, stack))
        stack = []
    if stack:
        commands.append(("", stack))
    return commands


def _flattenBlendArgs(args):
    token_list = []
    for arg in args:
        if isinstance(arg, list):
            token_list.extend(arg)
            token_list.append("blend")
        else:
            token_list.append(arg)
    return token_list


def commandsToProgram(commands):
    """Takes a commands list as returned by programToCommands() and converts
    it back to a T2CharString program list."""
    program = []
    for op, args in commands:
        if any(isinstance(arg, list) for arg in args):
            args = _flattenBlendArgs(args)
        program.extend(args)
        if op:
            program.append(op)
    return program


def _everyN(el, n):
    """Group the list el into groups of size n"""
    if len(el) % n != 0:
        raise ValueError(el)
    for i in range(0, len(el), n):
        yield el[i : i + n]


class _GeneralizerDecombinerCommandsMap(object):
    @staticmethod
    def rmoveto(args):
        if len(args) != 2:
            raise ValueError(args)
        yield ("rmoveto", args)

    @staticmethod
    def hmoveto(args):
        if len(args) != 1:
            raise ValueError(args)
        yield ("rmoveto", [args[0], 0])

    @staticmethod
    def vmoveto(args):
        if len(args) != 1:
            raise ValueError(args)
        yield ("rmoveto", [0, args[0]])

    @staticmethod
    def rlineto(args):
        if not args:
            raise ValueError(args)
        for args in _everyN(args, 2):
            yield ("rlineto", args)

    @staticmethod
    def hlineto(args):
        if not args:
            raise ValueError(args)
        it = iter(args)
        try:
            while True:
                yield ("rlineto", [next(it), 0])
                yield ("rlineto", [0, next(it)])
        except StopIteration:
            pass

    @staticmethod
    def vlineto(args):
        if not args:
            raise ValueError(args)
        it = iter(args)
        try:
            while True:
                yield ("rlineto", [0, next(it)])
                yield ("rlineto", [next(it), 0])
        except StopIteration:
            pass

    @staticmethod
    def rrcurveto(args):
        if not args:
            raise ValueError(args)
        for args in _everyN(args, 6):
            yield ("rrcurveto", args)

    @staticmethod
    def hhcurveto(args):
        if len(args) < 4 or len(args) % 4 > 1:
            raise ValueError(args)
        if len(args) % 2 == 1:
            yield ("rrcurveto", [args[1], args[0], args[2], args[3], args[4], 0])
            args = args[5:]
        for args in _everyN(args, 4):
            yield ("rrcurveto", [args[0], 0, args[1], args[2], args[3], 0])

    @staticmethod
    def vvcurveto(args):
        if len(args) < 4 or len(args) % 4 > 1:
            raise ValueError(args)
        if len(args) % 2 == 1:
            yield ("rrcurveto", [args[0], args[1], args[2], args[3], 0, args[4]])
            args = args[5:]
        for args in _everyN(args, 4):
            yield ("rrcurveto", [0, args[0], args[1], args[2], 0, args[3]])

    @staticmethod
    def hvcurveto(args):
        if len(args) < 4 or len(args) % 8 not in {0, 1, 4, 5}:
            raise ValueError(args)
        last_args = None
        if len(args) % 2 == 1:
            lastStraight = len(args) % 8 == 5
            args, last_args = args[:-5], args[-5:]
        it = _everyN(args, 4)
        try:
            while True:
                args = next(it)
                yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
                args = next(it)
                yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
        except StopIteration:
            pass
        if last_args:
            args = last_args
            if lastStraight:
                yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])
            else:
                yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])

    @staticmethod
    def vhcurveto(args):
        if len(args) < 4 or len(args) % 8 not in {0, 1, 4, 5}:
            raise ValueError(args)
        last_args = None
        if len(args) % 2 == 1:
            lastStraight = len(args) % 8 == 5
            args, last_args = args[:-5], args[-5:]
        it = _everyN(args, 4)
        try:
            while True:
                args = next(it)
                yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], 0])
                args = next(it)
                yield ("rrcurveto", [args[0], 0, args[1], args[2], 0, args[3]])
        except StopIteration:
            pass
        if last_args:
            args = last_args
            if lastStraight:
                yield ("rrcurveto", [0, args[0], args[1], args[2], args[3], args[4]])
            else:
                yield ("rrcurveto", [args[0], 0, args[1], args[2], args[4], args[3]])

    @staticmethod
    def rcurveline(args):
        if len(args) < 8 or len(args) % 6 != 2:
            raise ValueError(args)
        args, last_args = args[:-2], args[-2:]
        for args in _everyN(args, 6):
            yield ("rrcurveto", args)
        yield ("rlineto", last_args)

    @staticmethod
    def rlinecurve(args):
        if len(args) < 8 or len(args) % 2 != 0:
            raise ValueError(args)
        args, last_args = args[:-6], args[-6:]
        for args in _everyN(args, 2):
            yield ("rlineto", args)
        yield ("rrcurveto", last_args)


def _convertBlendOpToArgs(blendList):
    # args is list of blend op args. Since we are supporting
    # recursive blend op calls, some of these args may also
    # be a list of blend op args, and need to be converted before
    # we convert the current list.
    if any([isinstance(arg, list) for arg in blendList]):
        args = [
            i
            for e in blendList
            for i in (_convertBlendOpToArgs(e) if isinstance(e, list) else [e])
        ]
    else:
        args = blendList

    # We now know that blendList contains a blend op argument list, even if
    # some of the args are lists that each contain a blend op argument list.
    # 	Convert from:
    # 		[default font arg sequence x0,...,xn] + [delta tuple for x0] + ... + [delta tuple for xn]
    # 	to:
    # 		[ [x0] + [delta tuple for x0],
    #                 ...,
    #          [xn] + [delta tuple for xn] ]
    numBlends = args[-1]
    # Can't use args.pop() when the args are being used in a nested list
    # comprehension. See calling context
    args = args[:-1]

    numRegions = len(args) // numBlends - 1
    if not (numBlends * (numRegions + 1) == len(args)):
        raise ValueError(blendList)

    defaultArgs = [[arg] for arg in args[:numBlends]]
    deltaArgs = args[numBlends:]
    numDeltaValues = len(deltaArgs)
    deltaList = [
        deltaArgs[i : i + numRegions] for i in range(0, numDeltaValues, numRegions)
    ]
    blend_args = [a + b + [1] for a, b in zip(defaultArgs, deltaList)]
    return blend_args


def generalizeCommands(commands, ignoreErrors=False):
    result = []
    mapping = _GeneralizerDecombinerCommandsMap
    for op, args in commands:
        # First, generalize any blend args in the arg list.
        if any([isinstance(arg, list) for arg in args]):
            try:
                args = [
                    n
                    for arg in args
                    for n in (
                        _convertBlendOpToArgs(arg) if isinstance(arg, list) else [arg]
                    )
                ]
            except ValueError:
                if ignoreErrors:
                    # Store op as data, such that consumers of commands do not have to
                    # deal with incorrect number of arguments.
                    result.append(("", args))
                    result.append(("", [op]))
                else:
                    raise

        func = getattr(mapping, op, None)
        if not func:
            result.append((op, args))
            continue
        try:
            for command in func(args):
                result.append(command)
        except ValueError:
            if ignoreErrors:
                # Store op as data, such that consumers of commands do not have to
                # deal with incorrect number of arguments.
                result.append(("", args))
                result.append(("", [op]))
            else:
                raise
    return result


def generalizeProgram(program, getNumRegions=None, **kwargs):
    return commandsToProgram(
        generalizeCommands(programToCommands(program, getNumRegions), **kwargs)
    )


def _categorizeVector(v):
    """
    Takes X,Y vector v and returns one of r, h, v, or 0 depending on which
    of X and/or Y are zero, plus tuple of nonzero ones.  If both are zero,
    it returns a single zero still.

    >>> _categorizeVector((0,0))
    ('0', (0,))
    >>> _categorizeVector((1,0))
    ('h', (1,))
    >>> _categorizeVector((0,2))
    ('v', (2,))
    >>> _categorizeVector((1,2))
    ('r', (1, 2))
    """
    if not v[0]:
        if not v[1]:
            return "0", v[:1]
        else:
            return "v", v[1:]
    else:
        if not v[1]:
            return "h", v[:1]
        else:
            return "r", v


def _mergeCategories(a, b):
    if a == "0":
        return b
    if b == "0":
        return a
    if a == b:
        return a
    return None


def _negateCategory(a):
    if a == "h":
        return "v"
    if a == "v":
        return "h"
    assert a in "0r"
    return a


def _convertToBlendCmds(args):
    # return a list of blend commands, and
    # the remaining non-blended args, if any.
    num_args = len(args)
    stack_use = 0
    new_args = []
    i = 0
    while i < num_args:
        arg = args[i]
        if not isinstance(arg, list):
            new_args.append(arg)
            i += 1
            stack_use += 1
        else:
            prev_stack_use = stack_use
            # The arg is a tuple of blend values.
            # These are each (master 0,delta 1..delta n, 1)
            # Combine as many successive tuples as we can,
            # up to the max stack limit.
            num_sources = len(arg) - 1
            blendlist = [arg]
            i += 1
            stack_use += 1 + num_sources  # 1 for the num_blends arg
            while (i < num_args) and isinstance(args[i], list):
                blendlist.append(args[i])
                i += 1
                stack_use += num_sources
                if stack_use + num_sources > maxStackLimit:
                    # if we are here, max stack is the CFF2 max stack.
                    # I use the CFF2 max stack limit here rather than
                    # the 'maxstack' chosen by the client, as the default
                    #  maxstack may have been used unintentionally. For all
                    # the other operators, this just produces a little less
                    # optimization, but here it puts a hard (and low) limit
                    # on the number of source fonts that can be used.
                    break
            # blendList now contains as many single blend tuples as can be
            # combined without exceeding the CFF2 stack limit.
            num_blends = len(blendlist)
            # append the 'num_blends' default font values
            blend_args = []
            for arg in blendlist:
                blend_args.append(arg[0])
            for arg in blendlist:
                assert arg[-1] == 1
                blend_args.extend(arg[1:-1])
            blend_args.append(num_blends)
            new_args.append(blend_args)
            stack_use = prev_stack_use + num_blends

    return new_args


def _addArgs(a, b):
    if isinstance(b, list):
        if isinstance(a, list):
            if len(a) != len(b) or a[-1] != b[-1]:
                raise ValueError()
            return [_addArgs(va, vb) for va, vb in zip(a[:-1], b[:-1])] + [a[-1]]
        else:
            a, b = b, a
    if isinstance(a, list):
        assert a[-1] == 1
        return [_addArgs(a[0], b)] + a[1:]
    return a + b


def specializeCommands(
    commands,
    ignoreErrors=False,
    generalizeFirst=True,
    preserveTopology=False,
    maxstack=48,
):
    # We perform several rounds of optimizations.  They are carefully ordered and are:
    #
    # 0. Generalize commands.
    #    This ensures that they are in our expected simple form, with each line/curve only
    #    having arguments for one segment, and using the generic form (rlineto/rrcurveto).
    #    If caller is sure the input is in this form, they can turn off generalization to
    #    save time.
    #
    # 1. Combine successive rmoveto operations.
    #
    # 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
    #    We specialize into some, made-up, variants as well, which simplifies following
    #    passes.
    #
    # 3. Merge or delete redundant operations, to the extent requested.
    #    OpenType spec declares point numbers in CFF undefined.  As such, we happily
    #    change topology.  If client relies on point numbers (in GPOS anchors, or for
    #    hinting purposes(what?)) they can turn this off.
    #
    # 4. Peephole optimization to revert back some of the h/v variants back into their
    #    original "relative" operator (rline/rrcurveto) if that saves a byte.
    #
    # 5. Combine adjacent operators when possible, minding not to go over max stack size.
    #
    # 6. Resolve any remaining made-up operators into real operators.
    #
    # I have convinced myself that this produces optimal bytecode (except for, possibly
    # one byte each time maxstack size prohibits combining.)  YMMV, but you'd be wrong. :-)
    # A dynamic-programming approach can do the same but would be significantly slower.
    #
    # 7. For any args which are blend lists, convert them to a blend command.

    # 0. Generalize commands.
    if generalizeFirst:
        commands = generalizeCommands(commands, ignoreErrors=ignoreErrors)
    else:
        commands = list(commands)  # Make copy since we modify in-place later.

    # 1. Combine successive rmoveto operations.
    for i in range(len(commands) - 1, 0, -1):
        if "rmoveto" == commands[i][0] == commands[i - 1][0]:
            v1, v2 = commands[i - 1][1], commands[i][1]
            commands[i - 1] = ("rmoveto", [v1[0] + v2[0], v1[1] + v2[1]])
            del commands[i]

    # 2. Specialize rmoveto/rlineto/rrcurveto operators into horizontal/vertical variants.
    #
    # We, in fact, specialize into more, made-up, variants that special-case when both
    # X and Y components are zero.  This simplifies the following optimization passes.
    # This case is rare, but OCD does not let me skip it.
    #
    # After this round, we will have four variants that use the following mnemonics:
    #
    #  - 'r' for relative,   ie. non-zero X and non-zero Y,
    #  - 'h' for horizontal, ie. zero X and non-zero Y,
    #  - 'v' for vertical,   ie. non-zero X and zero Y,
    #  - '0' for zeros,      ie. zero X and zero Y.
    #
    # The '0' pseudo-operators are not part of the spec, but help simplify the following
    # optimization rounds.  We resolve them at the end.  So, after this, we will have four
    # moveto and four lineto variants:
    #
    #  - 0moveto, 0lineto
    #  - hmoveto, hlineto
    #  - vmoveto, vlineto
    #  - rmoveto, rlineto
    #
    # and sixteen curveto variants.  For example, a '0hcurveto' operator means a curve
    # dx0,dy0,dx1,dy1,dx2,dy2,dx3,dy3 where dx0, dx1, and dy3 are zero but not dx3.
    # An 'rvcurveto' means dx3 is zero but not dx0,dy0,dy3.
    #
    # There are nine different variants of curves without the '0'.  Those nine map exactly
    # to the existing curve variants in the spec: rrcurveto, and the four variants hhcurveto,
    # vvcurveto, hvcurveto, and vhcurveto each cover two cases, one with an odd number of
    # arguments and one without.  Eg. an hhcurveto with an extra argument (odd number of
    # arguments) is in fact an rhcurveto.  The operators in the spec are designed such that
    # all four of rhcurveto, rvcurveto, hrcurveto, and vrcurveto are encodable for one curve.
    #
    # Of the curve types with '0', the 00curveto is equivalent to a lineto variant.  The rest
    # of the curve types with a 0 need to be encoded as a h or v variant.  Ie. a '0' can be
    # thought of a "don't care" and can be used as either an 'h' or a 'v'.  As such, we always
    # encode a number 0 as argument when we use a '0' variant.  Later on, we can just substitute
    # the '0' with either 'h' or 'v' and it works.
    #
    # When we get to curve splines however, things become more complicated...  XXX finish this.
    # There's one more complexity with splines.  If one side of the spline is not horizontal or
    # vertical (or zero), ie. if it's 'r', then it limits which spline types we can encode.
    # Only hhcurveto and vvcurveto operators can encode a spline starting with 'r', and
    # only hvcurveto and vhcurveto operators can encode a spline ending with 'r'.
    # This limits our merge opportunities later.
    #
    for i in range(len(commands)):
        op, args = commands[i]

        if op in {"rmoveto", "rlineto"}:
            c, args = _categorizeVector(args)
            commands[i] = c + op[1:], args
            continue

        if op == "rrcurveto":
            c1, args1 = _categorizeVector(args[:2])
            c2, args2 = _categorizeVector(args[-2:])
            commands[i] = c1 + c2 + "curveto", args1 + args[2:4] + args2
            continue

    # 3. Merge or delete redundant operations, to the extent requested.
    #
    # TODO
    # A 0moveto that comes before all other path operations can be removed.
    # though I find conflicting evidence for this.
    #
    # TODO
    # "If hstem and vstem hints are both declared at the beginning of a
    # CharString, and this sequence is followed directly by the hintmask or
    # cntrmask operators, then the vstem hint operator (or, if applicable,
    # the vstemhm operator) need not be included."
    #
    # "The sequence and form of a CFF2 CharString program may be represented as:
    # {hs* vs* cm* hm* mt subpath}? {mt subpath}*"
    #
    # https://www.microsoft.com/typography/otspec/cff2charstr.htm#section3.1
    #
    # For Type2 CharStrings the sequence is:
    # w? {hs* vs* cm* hm* mt subpath}? {mt subpath}* endchar"

    # Some other redundancies change topology (point numbers).
    if not preserveTopology:
        for i in range(len(commands) - 1, -1, -1):
            op, args = commands[i]

            # A 00curveto is demoted to a (specialized) lineto.
            if op == "00curveto":
                assert len(args) == 4
                c, args = _categorizeVector(args[1:3])
                op = c + "lineto"
                commands[i] = op, args
                # and then...

            # A 0lineto can be deleted.
            if op == "0lineto":
                del commands[i]
                continue

            # Merge adjacent hlineto's and vlineto's.
            # In CFF2 charstrings from variable fonts, each
            # arg item may be a list of blendable values, one from
            # each source font.
            if i and op in {"hlineto", "vlineto"} and (op == commands[i - 1][0]):
                _, other_args = commands[i - 1]
                assert len(args) == 1 and len(other_args) == 1
                try:
                    new_args = [_addArgs(args[0], other_args[0])]
                except ValueError:
                    continue
                commands[i - 1] = (op, new_args)
                del commands[i]
                continue

    # 4. Peephole optimization to revert back some of the h/v variants back into their
    #    original "relative" operator (rline/rrcurveto) if that saves a byte.
    for i in range(1, len(commands) - 1):
        op, args = commands[i]
        prv, nxt = commands[i - 1][0], commands[i + 1][0]

        if op in {"0lineto", "hlineto", "vlineto"} and prv == nxt == "rlineto":
            assert len(args) == 1
            args = [0, args[0]] if op[0] == "v" else [args[0], 0]
            commands[i] = ("rlineto", args)
            continue

        if op[2:] == "curveto" and len(args) == 5 and prv == nxt == "rrcurveto":
            assert (op[0] == "r") ^ (op[1] == "r")
            if op[0] == "v":
                pos = 0
            elif op[0] != "r":
                pos = 1
            elif op[1] == "v":
                pos = 4
            else:
                pos = 5
            # Insert, while maintaining the type of args (can be tuple or list).
            args = args[:pos] + type(args)((0,)) + args[pos:]
            commands[i] = ("rrcurveto", args)
            continue

    # 5. Combine adjacent operators when possible, minding not to go over max stack size.
    for i in range(len(commands) - 1, 0, -1):
        op1, args1 = commands[i - 1]
        op2, args2 = commands[i]
        new_op = None

        # Merge logic...
        if {op1, op2} <= {"rlineto", "rrcurveto"}:
            if op1 == op2:
                new_op = op1
            else:
                if op2 == "rrcurveto" and len(args2) == 6:
                    new_op = "rlinecurve"
                elif len(args2) == 2:
                    new_op = "rcurveline"

        elif (op1, op2) in {("rlineto", "rlinecurve"), ("rrcurveto", "rcurveline")}:
            new_op = op2

        elif {op1, op2} == {"vlineto", "hlineto"}:
            new_op = op1

        elif "curveto" == op1[2:] == op2[2:]:
            d0, d1 = op1[:2]
            d2, d3 = op2[:2]

            if d1 == "r" or d2 == "r" or d0 == d3 == "r":
                continue

            d = _mergeCategories(d1, d2)
            if d is None:
                continue
            if d0 == "r":
                d = _mergeCategories(d, d3)
                if d is None:
                    continue
                new_op = "r" + d + "curveto"
            elif d3 == "r":
                d0 = _mergeCategories(d0, _negateCategory(d))
                if d0 is None:
                    continue
                new_op = d0 + "r" + "curveto"
            else:
                d0 = _mergeCategories(d0, d3)
                if d0 is None:
                    continue
                new_op = d0 + d + "curveto"

        # Make sure the stack depth does not exceed (maxstack - 1), so
        # that subroutinizer can insert subroutine calls at any point.
        if new_op and len(args1) + len(args2) < maxstack:
            commands[i - 1] = (new_op, args1 + args2)
            del commands[i]

    # 6. Resolve any remaining made-up operators into real operators.
    for i in range(len(commands)):
        op, args = commands[i]

        if op in {"0moveto", "0lineto"}:
            commands[i] = "h" + op[1:], args
            continue

        if op[2:] == "curveto" and op[:2] not in {"rr", "hh", "vv", "vh", "hv"}:
            op0, op1 = op[:2]
            if (op0 == "r") ^ (op1 == "r"):
                assert len(args) % 2 == 1
            if op0 == "0":
                op0 = "h"
            if op1 == "0":
                op1 = "h"
            if op0 == "r":
                op0 = op1
            if op1 == "r":
                op1 = _negateCategory(op0)
            assert {op0, op1} <= {"h", "v"}, (op0, op1)

            if len(args) % 2:
                if op0 != op1:  # vhcurveto / hvcurveto
                    if (op0 == "h") ^ (len(args) % 8 == 1):
                        # Swap last two args order
                        args = args[:-2] + args[-1:] + args[-2:-1]
                else:  # hhcurveto / vvcurveto
                    if op0 == "h":  # hhcurveto
                        # Swap first two args order
                        args = args[1:2] + args[:1] + args[2:]

            commands[i] = op0 + op1 + "curveto", args
            continue

    # 7. For any series of args which are blend lists, convert the series to a single blend arg.
    for i in range(len(commands)):
        op, args = commands[i]
        if any(isinstance(arg, list) for arg in args):
            commands[i] = op, _convertToBlendCmds(args)

    return commands


def specializeProgram(program, getNumRegions=None, **kwargs):
    return commandsToProgram(
        specializeCommands(programToCommands(program, getNumRegions), **kwargs)
    )


if __name__ == "__main__":
    import sys

    if len(sys.argv) == 1:
        import doctest

        sys.exit(doctest.testmod().failed)

    import argparse

    parser = argparse.ArgumentParser(
        "fonttools cffLib.specializer",
        description="CFF CharString generalizer/specializer",
    )
    parser.add_argument("program", metavar="command", nargs="*", help="Commands.")
    parser.add_argument(
        "--num-regions",
        metavar="NumRegions",
        nargs="*",
        default=None,
        help="Number of variable-font regions for blend opertaions.",
    )

    options = parser.parse_args(sys.argv[1:])

    getNumRegions = (
        None
        if options.num_regions is None
        else lambda vsIndex: int(options.num_regions[0 if vsIndex is None else vsIndex])
    )

    program = stringToProgram(options.program)
    print("Program:")
    print(programToString(program))
    commands = programToCommands(program, getNumRegions)
    print("Commands:")
    print(commands)
    program2 = commandsToProgram(commands)
    print("Program from commands:")
    print(programToString(program2))
    assert program == program2
    print("Generalized program:")
    print(programToString(generalizeProgram(program, getNumRegions)))
    print("Specialized program:")
    print(programToString(specializeProgram(program, getNumRegions)))