File size: 5,026 Bytes
b72ab63
 
 
 
09274b3
b72ab63
 
02cd175
72ff919
 
160e4b0
 
 
 
 
 
72ff919
b72ab63
160e4b0
 
 
 
f7d35cb
160e4b0
02cd175
b72ab63
 
 
160e4b0
 
72ff919
4c58375
b72ab63
 
 
09274b3
b72ab63
160e4b0
09274b3
 
 
 
 
 
 
 
 
 
 
 
 
 
160e4b0
f7d35cb
821e73d
b72ab63
 
396e7de
 
b72ab63
396e7de
 
72ff919
 
 
821e73d
72ff919
 
 
160e4b0
72ff919
a65bab4
 
 
09274b3
821e73d
 
09274b3
821e73d
bec1b9a
 
 
09274b3
bec1b9a
821e73d
09274b3
396e7de
b72ab63
02cd175
9c0d38a
b72ab63
 
 
0804336
b72ab63
 
 
 
 
 
160e4b0
b72ab63
 
 
 
0804336
b72ab63
4c5de34
b72ab63
821e73d
47d598f
 
821e73d
4300ea8
b72ab63
 
 
85be729
57e1a6e
b72ab63
821e73d
b72ab63
4c5de34
 
02cd175
4c5de34
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import torch
import argparse
import gradio as gr
import requests
from openvoice import se_extractor
from openvoice.api import BaseSpeakerTTS, ToneColorConverter
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from elevenlabs import play, save
from flask import Flask
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address

# Load environment variables
load_dotenv()

# Initialize Flask app
app = Flask(__name__)

# Setup Limiter for rate limiting and quota management based on IP address
limiter = Limiter(get_remote_address, app=app, default_limits=["5 per minute"])

# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=False, help="make link public")
args = parser.parse_args()

# Initialize ElevenLabs client
client = ElevenLabs(api_key=os.environ.get("ELEVENLABS_API_KEY"))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)

api_key = os.environ.get("ELEVENLABS_API_KEY")
supported_languages = ['zh', 'en']

# Function to get all voices
def get_voices(api_key):
    url = "https://api.elevenlabs.io/v1/voices"
    headers = {"xi-api-key": api_key}
    response = requests.request("GET", url, headers=headers)
    return response.json()

# Function to delete a voice by ID
def delete_voice(api_key, voice_id):
    url = f"https://api.elevenlabs.io/v1/voices/{voice_id}"
    headers = {"xi-api-key": api_key}
    response = requests.request("DELETE", url, headers=headers)
    return response.status_code, response.text

# Predict function with rate limiting based on IP address
#@limiter.limit("100 per minute")
def predict(prompt, style, audio_file_pth, voice_name):
    text_hint = ''
    if len(prompt) < 2:
        text_hint += "[ERROR] Please provide a longer prompt text.\n"
        return text_hint, None, None
    if len(prompt) > 200:
        text_hint += "[ERROR] Text length limited to 200 characters. Please try shorter text.\n"
        return text_hint, None, None
    
    print(audio_file_pth)
    voice = client.clone(
        name=voice_name,
        description="A trial voice model for testing",
        files=[audio_file_pth],
    )
    # Generate audio from text
    audio = client.generate(text=prompt, voice=voice)
    save(audio, f'{output_dir}/output.wav')
    
    save_path = f'{output_dir}/output.wav'
    data = get_voices(api_key)
    # Find all voice IDs with the name provided by the user
    trial_voice_ids = [voice.get("voice_id") for voice in data['voices'] if voice.get("name") == voice_name]

    # # Delete each voice with the name provided by the user
    # for voice_id in trial_voice_ids:
    #     status_code, response_text = delete_voice(api_key, voice_id)
    #     print(f"Deleted voice ID {voice_id}: Status Code {status_code}, Response {response_text}")

    # if not trial_voice_ids:
    #     print("No voices with the name provided by the user found.")

    return text_hint, save_path, audio_file_pth

# Gradio interface setup
with gr.Blocks(gr.themes.Glass()) as demo:
    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Create This",
                info="One or two sentences at a time is better. Up to 200 text characters.",
                value="He hoped there would be stew for dinner, turnips and carrots and bruised potatoes and fat mutton pieces to be ladled out in thick, peppered, flour-fattened sauce.",
            )
            style_gr = gr.Dropdown(
                label="Style",
                choices=['default', 'whispering', 'cheerful', 'terrified', 'angry', 'sad', 'friendly'],
                info="Please upload a reference audio file that is at least 1 minute long. For best results, ensure the audio is clear. You can use Adobe Podcast Enhance(https://podcast.adobe.com/enhance) to improve the audio quality before uploading.",
                max_choices=1,
                value="default",
            )
            ref_gr = gr.Audio(
                label="Original Audio",
                type="filepath",
                sources=["upload"],  # Allow only upload
            )
            voice_name_gr = gr.Textbox(
                label="Your name and Product you bought",
                value="Sam"
            )
            tts_button = gr.Button("Start", elem_id="send-btn", visible=True)

        with gr.Column():
            out_text_gr = gr.Text(label="Info")
            audio_gr = gr.Audio(label="Replicated Sound", autoplay=True)
            ref_audio_gr = gr.Audio(label="Original Audio Used ")

            tts_button.click(predict, [input_text_gr, style_gr, ref_gr, voice_name_gr], outputs=[out_text_gr, audio_gr, ref_audio_gr])

    demo.queue()
    demo.launch(debug=True, show_api=False, share=args.share)

# Hide Gradio footer and record button
css = """
footer {visibility: hidden}
audio .btn-container {display: none}
"""

demo.add_css(css)