Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import re | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
if torch.cuda.is_available(): | |
device, dtype = "cuda", torch.float16 | |
else: | |
device, dtype = "cpu", torch.float32 | |
model_id = "vikhyatk/moondream2" | |
revision = "2024-04-02" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) | |
moondream = AutoModelForCausalLM.from_pretrained( | |
model_id, trust_remote_code=True, revision=revision, torch_dtype=dtype | |
).to(device=device) | |
moondream.eval() | |
def answer_questions(image_tuples, prompt_text): | |
result = "" | |
prompts = [p.strip() for p in prompt_text.split(',')] # Splitting and cleaning prompts | |
print(f"prompts\n{prompts}\n") | |
image_embeds = [img[0] for img in image_tuples if img[0] is not None] # Extracting images from tuples, ignoring None | |
# Check if the lengths of image_embeds and prompts are equal | |
#if len(image_embeds) != len(prompts): | |
#return ("Error: The number of images input and prompts input (seperate by commas in input text field) must be the same.") | |
answers = [] | |
for prompt in prompts: | |
image_answers = moondream.batch_answer( | |
images=[img.convert("RGB") for img in image_embeds], | |
prompts=[prompt] * len(image_embeds), | |
tokenizer=tokenizer, | |
) | |
answers.append(image_answers) | |
data = [] | |
for i in range(len(image_tuples)): | |
image_name = f"image{i+1}" | |
image_answers = [answer[i] for answer in answers] | |
print(f"image{i+1}_answers \n {image_answers} \n") | |
data.append([image_name] + image_answers) | |
for question, answer in zip(prompts, answers): | |
Q_and_A += (f"Q: {question}\nA: {answer}\n\n") | |
print(f"\n\n{Q_and_A}\n\n") | |
result = {'headers': prompts, 'data': data} | |
return result | |
''' | |
answers = moondream.batch_answer( | |
images=image_embeds, | |
prompts=prompts, | |
tokenizer=tokenizer, | |
) | |
for question, answer in zip(prompts, answers): | |
result += (f"Q: {question}\nA: {answer}\n\n") | |
return result | |
''' | |
with gr.Blocks() as demo: | |
gr.Markdown("# moondream2 unofficial batch processing demo") | |
gr.Markdown("1. Select images\n2. Enter one or more prompts separated by commas. Ex: Describe this image, What is in this image?\n\n") | |
gr.Markdown("**Currently each image will be sent as a batch with the prompts thus asking each promp on each image**") | |
gr.Markdown("*Running on free CPU space tier currently so results may take a bit to process compared to duplicating space and using GPU space hardware*") | |
gr.Markdown("## π moondream2\nA tiny vision language model. [GitHub](https://github.com/vikhyatk/moondream)") | |
with gr.Row(): | |
img = gr.Gallery(label="Upload Images", type="pil") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Input Prompts", placeholder="Enter prompts (one prompt for each image provided) separated by commas. Ex: Describe this image, What is in this image?", lines=8) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
output = gr.TextArea(label="Questions and Answers", lines=30) | |
output2 = gr.Dataframe(label="Structured Dataframe", type="array",wrap=True) | |
submit.click(answer_questions, [img, prompt], output, output2) | |
demo.queue().launch() | |