|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
bloom_model_name = "CreitinGameplays/bloom-3b-conversational" |
|
|
|
|
|
generator = pipeline("text-generation", model=bloom_model_name, truncation=True) |
|
|
|
def conversation(prompt="", max_tokens=128): |
|
""" |
|
Generates conversation response using Bloom with Hugging Face Transformers. |
|
|
|
Args: |
|
prompt (str, optional): Text prompt for Bloom. Defaults to "". |
|
max_tokens (int, optional): Maximum number of tokens for response generation. Defaults to 128. |
|
|
|
Returns: |
|
str: Bloom's generated response to the prompt. |
|
""" |
|
|
|
try: |
|
|
|
response = generator(prompt, max_length=max_tokens, num_return_sequences=1)[0]["generated_text"] |
|
return response.strip() |
|
except Exception as e: |
|
print(f"Error during Bloom interaction: {e}") |
|
return "Bloom is currently unavailable. Try again later!" |
|
|
|
interface = gr.Interface( |
|
fn=conversation, |
|
inputs=[ |
|
gr.Textbox(label="Text Prompt", value="<|system|> You are a helpful AI assistant </s> <|prompter|> What is an AI? </s> <|assistant|>"), |
|
gr.Slider(minimum=1, maximum=1024, label="Max New Tokens", value=128), |
|
], |
|
outputs=gr.Textbox(label="AI Assistant Response"), |
|
title="Bloom 3b Conversational Assistant", |
|
description="Talk to Bloom 3b using a text prompt and adjust the maximum number tokens for response generation.", |
|
) |
|
|
|
interface.launch() |
|
|
|
def generate_response_from_bloom3b(prompt, max_tokens): |
|
|
|
|
|
|
|
|
|
return "This is a placeholder response from generate_response_from_bloom3b" |
|
|