CreitinGameplays
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,147 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
|
|
|
5 |
import torch
|
|
|
6 |
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
def
|
|
|
|
|
|
|
22 |
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
examples = [
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
]
|
45 |
|
46 |
-
css=
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
}
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
-
with gr.
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
@@ -72,75 +149,117 @@ with gr.Blocks(css=css) as demo:
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
label="Negative prompt",
|
84 |
max_lines=1,
|
85 |
placeholder="Enter a negative prompt",
|
86 |
-
visible=
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
label="
|
91 |
-
minimum=
|
92 |
-
maximum=
|
93 |
step=1,
|
94 |
-
value=
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
minimum=256,
|
112 |
-
maximum=MAX_IMAGE_SIZE,
|
113 |
-
step=32,
|
114 |
-
value=512,
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
fn =
|
142 |
-
inputs
|
143 |
-
outputs
|
|
|
144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import uuid
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import spaces
|
9 |
+
from typing import Tuple
|
10 |
import torch
|
11 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
|
|
13 |
|
14 |
+
DESCRIPTION = """# InterDiffusion-4.0
|
15 |
+
### [https://huggingface.co/cutycat2000x/InterDiffusion-4.0](https://huggingface.co/cutycat2000x/InterDiffusion-4.0)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
17 |
|
18 |
+
def save_image(img):
|
19 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
20 |
+
img.save(unique_name)
|
21 |
+
return unique_name
|
22 |
|
23 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
24 |
if randomize_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
+
return seed
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
MAX_SEED = np.iinfo(np.int32).max
|
31 |
+
|
32 |
+
if not torch.cuda.is_available():
|
33 |
+
DESCRIPTION += "\n<p>Running on CPU, This may not work on CPU.</p>"
|
34 |
+
|
35 |
+
MAX_SEED = np.iinfo(np.int32).max
|
36 |
+
|
37 |
+
USE_TORCH_COMPILE = 0
|
38 |
+
ENABLE_CPU_OFFLOAD = 0
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
45 |
+
"cutycat2000x/InterDiffusion-4.0",
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
use_safetensors=True,
|
48 |
+
)
|
49 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
50 |
+
pipe.load_lora_weights("cutycat2000x/LoRA2", weight_name="lora.safetensors", adapter_name="adapt")
|
51 |
+
pipe.set_adapters("adapt")
|
52 |
+
pipe.to("cuda")
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
style_list = [
|
59 |
+
{
|
60 |
+
"name": "(LoRA)",
|
61 |
+
"prompt": "{prompt}",
|
62 |
+
"negative_prompt": "",
|
63 |
+
},
|
64 |
+
|
65 |
|
66 |
+
]
|
67 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
68 |
+
STYLE_NAMES = list(styles.keys())
|
69 |
+
DEFAULT_STYLE_NAME = "(LoRA)"
|
70 |
+
|
71 |
+
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
72 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
73 |
+
if not negative:
|
74 |
+
negative = ""
|
75 |
+
return p.replace("{prompt}", positive), n + negative
|
76 |
+
|
77 |
+
@spaces.GPU(enable_queue=True)
|
78 |
+
def generate(
|
79 |
+
prompt: str,
|
80 |
+
negative_prompt: str = "",
|
81 |
+
style: str = DEFAULT_STYLE_NAME,
|
82 |
+
use_negative_prompt: bool = False,
|
83 |
+
num_inference_steps: int = 30,
|
84 |
+
num_images_per_prompt: int = 2,
|
85 |
+
seed: int = 0,
|
86 |
+
width: int = 1024,
|
87 |
+
height: int = 1024,
|
88 |
+
guidance_scale: float = 3,
|
89 |
+
randomize_seed: bool = False,
|
90 |
+
progress=gr.Progress(track_tqdm=True),
|
91 |
+
):
|
92 |
+
|
93 |
|
94 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
95 |
+
|
96 |
+
if not use_negative_prompt:
|
97 |
+
negative_prompt = "" # type: ignore
|
98 |
+
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
99 |
+
|
100 |
+
images = pipe(
|
101 |
+
prompt=prompt,
|
102 |
+
negative_prompt=negative_prompt,
|
103 |
+
width=width,
|
104 |
+
height=height,
|
105 |
+
guidance_scale=guidance_scale,
|
106 |
+
num_inference_steps=num_inference_steps,
|
107 |
+
num_images_per_prompt=num_images_per_prompt,
|
108 |
+
cross_attention_kwargs={"scale": 0.65},
|
109 |
+
output_type="pil",
|
110 |
+
).images
|
111 |
+
image_paths = [save_image(img) for img in images]
|
112 |
+
print(image_paths)
|
113 |
+
return image_paths, seed
|
114 |
|
115 |
examples = [
|
116 |
+
'a smiling girl with sparkles in her eyes, walking in a garden, in the morning --style anime',
|
117 |
+
'firewatch landscape, Graphic Novel, Pastel Art, Poster, Golden Hour, Electric Colors, 4k, RGB, Geometric, Volumetric, Lumen Global Illumination, Ray Tracing Reflections, Twisted Rays, Glowing Edges, RTX --raw',
|
118 |
+
'Samsung Galaxy S9',
|
119 |
+
'cat, 4k, 8k, hyperrealistic, realistic, High-resolution, unreal engine 5, rtx, 16k, taken on a sony camera, Cinematic, dramatic lighting',
|
120 |
+
'cinimatic closeup of burning skull',
|
121 |
+
'frozen elsa',
|
122 |
+
'A rainbow tree, anime style, tree in focus',
|
123 |
+
'A cat holding a sign that reads "Hello World" in cursive text',
|
124 |
+
'A birthday card for "Meow"'
|
125 |
]
|
126 |
|
127 |
+
css = '''
|
128 |
+
.gradio-container{max-width: 560px !important}
|
129 |
+
h1{text-align:center}
|
130 |
+
footer {
|
131 |
+
visibility: hidden
|
132 |
}
|
133 |
+
'''
|
134 |
|
135 |
+
with gr.Blocks(css=css, theme="xiaobaiyuan/theme_brief") as demo:
|
136 |
+
gr.Markdown(DESCRIPTION)
|
137 |
+
gr.DuplicateButton(
|
138 |
+
value="Duplicate Space for private use",
|
139 |
+
elem_id="duplicate-button",
|
140 |
+
visible=False,
|
141 |
+
)
|
142 |
|
143 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
with gr.Row():
|
|
|
145 |
prompt = gr.Text(
|
146 |
label="Prompt",
|
147 |
show_label=False,
|
|
|
149 |
placeholder="Enter your prompt",
|
150 |
container=False,
|
151 |
)
|
152 |
+
run_button = gr.Button("Run")
|
153 |
+
result = gr.Gallery(label="Result", columns=1, preview=True)
|
154 |
+
with gr.Accordion("Advanced options", open=False):
|
155 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
|
156 |
+
negative_prompt = gr.Text(
|
|
|
|
|
|
|
157 |
label="Negative prompt",
|
158 |
max_lines=1,
|
159 |
placeholder="Enter a negative prompt",
|
160 |
+
visible=True,
|
161 |
)
|
162 |
+
with gr.Row():
|
163 |
+
num_inference_steps = gr.Slider(
|
164 |
+
label="Steps",
|
165 |
+
minimum=10,
|
166 |
+
maximum=60,
|
167 |
step=1,
|
168 |
+
value=30,
|
169 |
)
|
170 |
+
with gr.Row():
|
171 |
+
num_images_per_prompt = gr.Slider(
|
172 |
+
label="Images",
|
173 |
+
minimum=1,
|
174 |
+
maximum=5,
|
175 |
+
step=1,
|
176 |
+
value=2,
|
177 |
+
)
|
178 |
+
seed = gr.Slider(
|
179 |
+
label="Seed",
|
180 |
+
minimum=0,
|
181 |
+
maximum=MAX_SEED,
|
182 |
+
step=1,
|
183 |
+
value=0,
|
184 |
+
visible=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
)
|
186 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
187 |
+
with gr.Row(visible=True):
|
188 |
+
width = gr.Slider(
|
189 |
+
label="Width",
|
190 |
+
minimum=512,
|
191 |
+
maximum=2048,
|
192 |
+
step=8,
|
193 |
+
value=1024,
|
194 |
+
)
|
195 |
+
height = gr.Slider(
|
196 |
+
label="Height",
|
197 |
+
minimum=512,
|
198 |
+
maximum=2048,
|
199 |
+
step=8,
|
200 |
+
value=1024,
|
201 |
+
)
|
202 |
+
with gr.Row():
|
203 |
+
guidance_scale = gr.Slider(
|
204 |
+
label="Guidance Scale",
|
205 |
+
minimum=0.1,
|
206 |
+
maximum=20.0,
|
207 |
+
step=0.1,
|
208 |
+
value=6,
|
209 |
+
)
|
210 |
+
with gr.Row(visible=True):
|
211 |
+
style_selection = gr.Radio(
|
212 |
+
show_label=True,
|
213 |
+
container=True,
|
214 |
+
interactive=True,
|
215 |
+
choices=STYLE_NAMES,
|
216 |
+
value=DEFAULT_STYLE_NAME,
|
217 |
+
label="Image Style",
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
gr.Examples(
|
222 |
+
examples=examples,
|
223 |
+
inputs=prompt,
|
224 |
+
outputs=[result, seed],
|
225 |
+
fn=generate,
|
226 |
+
cache_examples=False,
|
227 |
+
)
|
228 |
|
229 |
+
use_negative_prompt.change(
|
230 |
+
fn=lambda x: gr.update(visible=x),
|
231 |
+
inputs=use_negative_prompt,
|
232 |
+
outputs=negative_prompt,
|
233 |
+
api_name=False,
|
234 |
)
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
gr.on(
|
239 |
+
triggers=[
|
240 |
+
prompt.submit,
|
241 |
+
negative_prompt.submit,
|
242 |
+
run_button.click,
|
243 |
+
],
|
244 |
+
fn=generate,
|
245 |
+
inputs=[
|
246 |
+
prompt,
|
247 |
+
negative_prompt,
|
248 |
+
style_selection,
|
249 |
+
use_negative_prompt,
|
250 |
+
num_inference_steps,
|
251 |
+
num_images_per_prompt,
|
252 |
+
seed,
|
253 |
+
width,
|
254 |
+
height,
|
255 |
+
guidance_scale,
|
256 |
+
randomize_seed,
|
257 |
+
],
|
258 |
+
outputs=[result, seed],
|
259 |
+
api_name="run",
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
|
264 |
+
if __name__ == "__main__":
|
265 |
+
demo.queue(max_size=20).launch(show_api=False, debug=False)
|