|
import torch |
|
from torch.utils.data import Dataset,DataLoader |
|
import torch.nn as nn |
|
import nltk |
|
from nltk.stem.porter import PorterStemmer |
|
import json |
|
import numpy as np |
|
|
|
|
|
def Training(): |
|
|
|
class NeuralNet(nn.Module): |
|
|
|
def __init__(self,input_size,hidden_size,num_classes): |
|
super(NeuralNet,self).__init__() |
|
self.l1 = nn.Linear(input_size,hidden_size) |
|
self.l2 = nn.Linear(hidden_size,hidden_size) |
|
self.l3 = nn.Linear(hidden_size,num_classes) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self,x): |
|
out = self.l1(x) |
|
out = self.relu(out) |
|
out = self.l2(out) |
|
out = self.relu(out) |
|
out = self.l3(out) |
|
return out |
|
|
|
Stemmer = PorterStemmer() |
|
|
|
def tokenize(sentence): |
|
return nltk.word_tokenize(sentence) |
|
|
|
def stem(word): |
|
return Stemmer.stem(word.lower()) |
|
|
|
def bag_of_words(tokenized_sentence,words): |
|
sentence_word = [stem(word) for word in tokenized_sentence] |
|
bag = np.zeros(len(words),dtype=np.float32) |
|
|
|
for idx , w in enumerate(words): |
|
if w in sentence_word: |
|
bag[idx] = 1 |
|
|
|
return bag |
|
|
|
with open("intents.json",'r') as f: |
|
intents = json.load(f) |
|
|
|
all_words = [] |
|
tags = [] |
|
xy = [] |
|
|
|
for intent in intents['intents']: |
|
tag = intent['tag'] |
|
tags.append(tag) |
|
|
|
for pattern in intent['patterns']: |
|
w = tokenize(pattern) |
|
all_words.extend(w) |
|
xy.append((w,tag)) |
|
|
|
ignore_words = [',','?','/','.','!'] |
|
all_words = [stem(w) for w in all_words if w not in ignore_words] |
|
all_words = sorted(set(all_words)) |
|
tags = sorted(set(tags)) |
|
|
|
x_train = [] |
|
y_train = [] |
|
|
|
for (pattern_sentence,tag) in xy: |
|
bag = bag_of_words(pattern_sentence,all_words) |
|
x_train.append(bag) |
|
|
|
label = tags.index(tag) |
|
y_train.append(label) |
|
|
|
x_train = np.array(x_train) |
|
y_train = np.array(y_train) |
|
|
|
num_epochs = 1000 |
|
batch_size = 8 |
|
learning_rate = 0.001 |
|
input_size = len(x_train[0]) |
|
hidden_size = 8 |
|
output_size = len(tags) |
|
print(">> Training The Chats Module :- Conciousness ") |
|
|
|
class ChatDataset(Dataset): |
|
|
|
def __init__(self): |
|
self.n_samples = len(x_train) |
|
self.x_data = x_train |
|
self.y_data = y_train |
|
|
|
def __getitem__(self,index): |
|
return self.x_data[index],self.y_data[index] |
|
|
|
def __len__(self): |
|
return self.n_samples |
|
|
|
dataset = ChatDataset() |
|
|
|
train_loader = DataLoader(dataset=dataset, |
|
batch_size=batch_size, |
|
shuffle=True, |
|
num_workers=0) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = NeuralNet(input_size,hidden_size,output_size).to(device=device) |
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = torch.optim.Adam(model.parameters(),lr=learning_rate) |
|
|
|
for epoch in range(num_epochs): |
|
for (words,labels) in train_loader: |
|
words = words.to(device) |
|
labels = labels.to(dtype=torch.long).to(device) |
|
outputs = model(words) |
|
loss = criterion(outputs,labels) |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if (epoch+1) % 100 ==0: |
|
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') |
|
|
|
print(f'Final Loss : {loss.item():.4f}') |
|
|
|
data = { |
|
"model_state":model.state_dict(), |
|
"input_size":input_size, |
|
"hidden_size":hidden_size, |
|
"output_size":output_size, |
|
"all_words":all_words, |
|
"tags":tags |
|
} |
|
|
|
FILE = "intents.pth" |
|
torch.save(data,FILE) |
|
|
|
print(f"Training Complete, File Saved To {FILE}") |
|
print(" ") |
|
|
|
|
|
|
|
|
|
Training() |
|
|
|
|