# from dotenv import load_dotenv | |
# from langchain import HuggingFaceHub, LLMChain | |
# from langchain import PromptTemplates | |
# import gradio | |
# load_dotenv() | |
# os.getenv('HF_API') | |
# hub_llm = HuggingFaceHub(repo_id='facebook/blenderbot-400M-distill') | |
# prompt = prompt_templates( | |
# input_variable = ["question"], | |
# template = "Answer is: {question}" | |
# ) | |
# hub_chain = LLMChain(prompt=prompt, llm=hub_llm, verbose=True) | |
# Sample code for AI language model interaction | |
# from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
# import gradio | |
# def simptok(data): | |
# # Load pre-trained model and tokenizer (using the transformers library) | |
# model_name = "gpt2" | |
# tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# model = GPT2LMHeadModel.from_pretrained(model_name) | |
# # User input | |
# user_input = data | |
# # Tokenize input | |
# input_ids = tokenizer.encode(user_input, return_tensors="pt") | |
# # Generate response | |
# output = model.generate(input_ids, max_length=50, num_return_sequences=1) | |
# response = tokenizer.decode(output[0], skip_special_tokens=True) | |
# return response | |
# def responsenew(data): | |
# return simptok(data) | |
from hugchat import hugchat | |
import gradio as gr | |
import time | |
# Create a chatbot connection | |
chatbot = hugchat.ChatBot(cookie_path="cookies.json") | |
# New a conversation (ignore error) | |
id = chatbot.new_conversation() | |
chatbot.change_conversation(id) | |
def get_answer(data): | |
return chatbot.chat(data) | |
gradio_interface = gr.Interface( | |
fn = get_answer, | |
inputs = "text", | |
outputs = "text" | |
) | |
gradio_interface.launch() | |
# gradio_interface = gradio.Interface( | |
# fn = responsenew, | |
# inputs = "text", | |
# outputs = "text" | |
# ) | |
# gradio_interface.launch() | |