dataautogpt3 commited on
Commit
1afc34c
Β·
verified Β·
1 Parent(s): b73a9d3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +175 -112
app.py CHANGED
@@ -1,70 +1,120 @@
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
 
 
 
37
 
38
- return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
 
44
  ]
45
 
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
 
50
  }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
-
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,75 +122,88 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
  negative_prompt = gr.Text(
83
  label="Negative prompt",
84
- max_lines=1,
 
 
85
  placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
 
144
  )
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import uuid
4
+
5
  import gradio as gr
6
  import numpy as np
7
+ from PIL import Image
8
+ import spaces
9
  import torch
10
+ from diffusers import (
11
+ StableDiffusionXLPipeline,
12
+ KDPM2AncestralDiscreteScheduler,
13
+ AutoencoderKL
14
+ )
15
+ DESCRIPTION = """
16
+ # Mobius
17
 
18
+ a diffusion model that pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing a brand new constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch.
19
 
20
+ Model by [Corcel.io](https://huggingface.co/Corcelio/mobius)
21
+ """
22
+ if not torch.cuda.is_available():
23
+ DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo may not work on CPU.</p>"
 
 
 
 
24
 
25
  MAX_SEED = np.iinfo(np.int32).max
 
26
 
27
+ USE_TORCH_COMPILE = 0
28
+ ENABLE_CPU_OFFLOAD = 0
29
+
30
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
31
+
32
+
33
+ vae = AutoencoderKL.from_pretrained(
34
+ "madebyollin/sdxl-vae-fp16-fix",
35
+ torch_dtype=torch.float16
36
+ )
37
+
38
+ # Configure the pipeline
39
+ pipe = StableDiffusionXLPipeline.from_pretrained(
40
+ "Corcelio/openvision",
41
+ vae=vae,
42
+ torch_dtype=torch.float16,
43
+ )
44
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
45
+ pipe.to('cuda')
46
+
47
+ def save_image(img):
48
+ unique_name = str(uuid.uuid4()) + ".png"
49
+ img.save(unique_name)
50
+ return unique_name
51
+
52
 
53
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
54
  if randomize_seed:
55
  seed = random.randint(0, MAX_SEED)
56
+ return seed
57
+
58
+
59
+ @spaces.GPU(enable_queue=True)
60
+ def generate(
61
+ prompt: str,
62
+ negative_prompt: str = "",
63
+ use_negative_prompt: bool = False,
64
+ seed: int = 0,
65
+ width: int = 1280,
66
+ height: int = 1280,
67
+ guidance_scale: float = 1.5,
68
+ randomize_seed: bool = False,
69
+ progress=gr.Progress(track_tqdm=True),
70
+ ):
71
 
72
+ pipe.to(device)
73
+ seed = int(randomize_seed_fn(seed, randomize_seed))
74
+
75
+ if not use_negative_prompt:
76
+ negative_prompt = "" # type: ignore
77
+ images = pipe(
78
+ prompt=f'''{prompt}''',
79
+ negative_prompt=f"{negative_prompt}",
80
+ width=width,
81
+ height=height,
82
+ guidance_scale=guidance_scale,
83
+ num_inference_steps=30,
84
+ num_images_per_prompt=1,
85
+ output_type="pil",
86
+ ).images
87
+
88
+ image_paths = [save_image(img) for img in images]
89
+ print(image_paths)
90
+ return image_paths, seed
91
+
92
+
93
+
94
 
95
  examples = [
96
+ "a cat wearing sunglasses in the summer",
97
+ "an astronaut riding a horse on the moon",
98
+ "anime boy, protagonist,",
99
+ "A tiny robot taking a break under a tree in the garden",
100
  ]
101
 
102
+ css = '''
103
+ .gradio-container{max-width: 560px !important}
104
+ h1{text-align:center}
105
+ footer {
106
+ visibility: hidden
107
  }
108
+ '''
109
+ with gr.Blocks(title="Mobius", css=css) as demo:
110
+ gr.Markdown(DESCRIPTION)
111
+ gr.DuplicateButton(
112
+ value="Duplicate Space for private use",
113
+ elem_id="duplicate-button",
114
+ visible=False,
115
+ )
116
+ with gr.Group():
 
 
 
 
 
 
117
  with gr.Row():
 
118
  prompt = gr.Text(
119
  label="Prompt",
120
  show_label=False,
 
122
  placeholder="Enter your prompt",
123
  container=False,
124
  )
 
125
  run_button = gr.Button("Run", scale=0)
126
+ result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
127
+ with gr.Accordion("Advanced options", open=False):
128
+ with gr.Row():
129
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
 
130
  negative_prompt = gr.Text(
131
  label="Negative prompt",
132
+ max_lines=6,
133
+ lines=4,
134
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:0.25)",
135
  placeholder="Enter a negative prompt",
136
+ visible=True,
 
 
 
 
 
 
 
 
137
  )
138
+ seed = gr.Slider(
139
+ label="Seed",
140
+ minimum=0,
141
+ maximum=MAX_SEED,
142
+ step=1,
143
+ value=0,
144
+ visible=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
  )
146
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
147
+ with gr.Row(visible=True):
148
+ width = gr.Slider(
149
+ label="Width",
150
+ minimum=512,
151
+ maximum=2048,
152
+ step=8,
153
+ value=1024,
154
+ )
155
+ height = gr.Slider(
156
+ label="Height",
157
+ minimum=512,
158
+ maximum=2048,
159
+ step=8,
160
+ value=1024,
161
+ )
162
+ with gr.Row():
163
+ guidance_scale = gr.Slider(
164
+ label="Guidance Scale",
165
+ minimum=0.1,
166
+ maximum=20,
167
+ step=0.1,
168
+ value=7.0,
169
+ )
170
 
171
+ gr.Examples(
172
+ examples=examples,
173
+ inputs=prompt,
174
+ outputs=[result, seed],
175
+ fn=generate,
176
+ cache_examples=False,
177
  )
178
 
179
+ use_negative_prompt.change(
180
+ fn=lambda x: gr.update(visible=x),
181
+ inputs=use_negative_prompt,
182
+ outputs=negative_prompt,
183
+ api_name=False,
184
+ )
185
+
186
+
187
+ gr.on(
188
+ triggers=[
189
+ prompt.submit,
190
+ negative_prompt.submit,
191
+ run_button.click,
192
+ ],
193
+ fn=generate,
194
+ inputs=[
195
+ prompt,
196
+ negative_prompt,
197
+ use_negative_prompt,
198
+ seed,
199
+ width,
200
+ height,
201
+ guidance_scale,
202
+ randomize_seed,
203
+ ],
204
+ outputs=[result, seed],
205
+ api_name="run",
206
+ )
207
+
208
+ if __name__ == "__main__":
209
+ demo.queue(max_size=20).launch(show_api=False, debug=False)