rodrigomasini commited on
Commit
b16f650
·
verified ·
1 Parent(s): 8630351

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -218
app.py CHANGED
@@ -1,219 +1,3 @@
1
- from functools import lru_cache
2
- import time, aiohttp, asyncio, json, os, multiprocessing, torch, \
3
- requests, xmltodict, fitz, io
4
- from minivectordb.embedding_model import EmbeddingModel
5
- from minivectordb.vector_database import VectorDatabase
6
- from text_util_en_pt.cleaner import structurize_text, detect_language, Language
7
- import gradio as gr
8
 
9
- torch.set_num_threads(2)
10
-
11
- openrouter_key = os.environ.get("OPENROUTER_KEY")
12
- model = EmbeddingModel(use_quantized_onnx_model=True)
13
-
14
- def convert_xml_to_json(xml):
15
- return xmltodict.parse(xml)
16
-
17
- def clean_title(title):
18
- title = title.replace('\n', ' ')
19
- while ' ' in title:
20
- title = title.replace(' ', ' ')
21
- return title
22
-
23
- @lru_cache(maxsize=500)
24
- def fetch_arxiv_links(query, max_results=5):
25
- url = f'http://export.arxiv.org/api/query?search_query=all:{query}&start=0&max_results={max_results}'
26
- response = requests.get(url)
27
- json_response = convert_xml_to_json(response.text)
28
-
29
- # Return a list of titles and links, and pdf links
30
- entries = []
31
- for entry in json_response['feed']['entry']:
32
-
33
- title = entry['title']
34
- id = entry['id'].split('/abs/')[-1]
35
-
36
- link = f'http://arxiv.org/abs/{id}'
37
- pdf_link = f'http://arxiv.org/pdf/{id}.pdf'
38
-
39
- entries.append({
40
- 'title': clean_title(title),
41
- 'link': link,
42
- 'pdf_link': pdf_link
43
- })
44
- return entries
45
-
46
- def download_pdf_from_link(link):
47
- # Download the file and hold it in memory
48
- response = requests.get(link)
49
- return io.BytesIO(response.content)
50
-
51
- @lru_cache(maxsize=100)
52
- def read_remote_pdf(pdf_metadata):
53
- pdf_metadata = json.loads(pdf_metadata)
54
-
55
- link = pdf_metadata['pdf_link']
56
- title = pdf_metadata['title']
57
-
58
- pdf_content = download_pdf_from_link(link)
59
- pdf_file = fitz.open("pdf", pdf_content.read())
60
- text_content = [page.get_text() for page in pdf_file]
61
- pdf_file.close()
62
- del pdf_file
63
- return {'title': title, 'text': '\n'.join(text_content)}
64
-
65
- def fetch_data_from_pdfs(links):
66
- links = [ json.dumps(link) for link in links ]
67
- with multiprocessing.Pool(10) as pool:
68
- pdf_metadata = pool.map(read_remote_pdf, links)
69
- return pdf_metadata
70
-
71
- def index_and_search(query, pdf_metadata):
72
- start = time.time()
73
- query_embedding = model.extract_embeddings(query)
74
-
75
- # Indexing
76
- vector_db = VectorDatabase()
77
-
78
- sentence_counter = 1
79
-
80
- for pdf_data in pdf_metadata:
81
- text = pdf_data['text']
82
- title = pdf_data['title']
83
-
84
- sentences = [ s['sentence'] for s in structurize_text(text)]
85
-
86
- for sentence in sentences:
87
- sentence_embedding = model.extract_embeddings(sentence)
88
- vector_db.store_embedding(
89
- sentence_counter,
90
- sentence_embedding,
91
- {
92
- 'sentence': sentence,
93
- 'title': title
94
- }
95
- )
96
- sentence_counter += 1
97
-
98
- embedding_time = time.time() - start
99
-
100
- # Retrieval
101
- start = time.time()
102
- search_results = vector_db.find_most_similar(query_embedding, k = 15)
103
- search_metadata = search_results[2]
104
- retrieval_time = time.time() - start
105
-
106
- retrieved_contents = {}
107
- for ret_cont in search_metadata:
108
- title = ret_cont['title']
109
- if title not in retrieved_contents:
110
- retrieved_contents[title] = []
111
- retrieved_contents[title].append(ret_cont['sentence'])
112
-
113
- retrieved_contents = {k: '\n'.join(v) for k, v in retrieved_contents.items() if len(v) > 2}
114
-
115
- return retrieved_contents, embedding_time, retrieval_time
116
-
117
- def retrieval_pipeline(query, question):
118
- start = time.time()
119
- links = fetch_arxiv_links(query)
120
- websearch_time = time.time() - start
121
-
122
- start = time.time()
123
- pdf_metadata = fetch_data_from_pdfs(links)
124
- webcrawl_time = time.time() - start
125
-
126
- retrieved_contents, embedding_time, retrieval_time = index_and_search(question, pdf_metadata)
127
-
128
- return retrieved_contents, websearch_time, webcrawl_time, embedding_time, retrieval_time, links
129
-
130
- async def predict(message, history):
131
- # message is in format: "Search: <query>; Question: <question>"
132
- # we need to parse both parts into variables
133
- message = message.split(';')
134
-
135
- query = message[0].split(':')[-1].strip()
136
- question = message[1].split(':')[-1].strip()
137
-
138
- retrieved_contents, websearch_time, webcrawl_time, embedding_time, retrieval_time, links = retrieval_pipeline(query, question)
139
-
140
- if detect_language(message) == Language.ptbr:
141
- context = ""
142
- for title, content in retrieved_contents.items():
143
- context += f'Artigo "{title}"\nConteúdo:\n{content}\n\n'
144
- prompt = f'{context.strip()}\n\nBaseado nos conteúdos dos artigos, responda: "{message}"\n\nPor favor, mencione a fonte da sua resposta.'
145
- else:
146
- context = ""
147
- for title, content in retrieved_contents.items():
148
- context += f'Article "{title}"\nContent:\n{content}\n\n'
149
- prompt = f'{context.strip()}\n\nBased on the article\'s contents, answer: "{message}"\n\nPlease, mention the source of your answer.'
150
-
151
- print(prompt)
152
-
153
- url = "https://openrouter.ai/api/v1/chat/completions"
154
- headers = { "Content-Type": "application/json",
155
- "Authorization": f"Bearer {openrouter_key}" }
156
- body = { "stream": True,
157
- "models": [
158
- "mistralai/mistral-7b-instruct:free",
159
- "openchat/openchat-7b:free"
160
- ],
161
- "route": "fallback",
162
- "max_tokens": 1024,
163
- "messages": [
164
- {"role": "user", "content": prompt}
165
- ] }
166
-
167
- full_response = ""
168
- async with aiohttp.ClientSession() as session:
169
- async with session.post(url, headers=headers, json=body) as response:
170
- buffer = "" # A buffer to hold incomplete lines of data
171
- async for chunk in response.content.iter_any():
172
- buffer += chunk.decode()
173
- while "\n" in buffer: # Process as long as there are complete lines in the buffer
174
- line, buffer = buffer.split("\n", 1)
175
-
176
- if line.startswith("data: "):
177
- event_data = line[len("data: "):]
178
- if event_data != '[DONE]':
179
- try:
180
- current_text = json.loads(event_data)['choices'][0]['delta']['content']
181
- full_response += current_text
182
- yield full_response
183
- await asyncio.sleep(0.01)
184
- except Exception:
185
- try:
186
- current_text = json.loads(event_data)['choices'][0]['text']
187
- full_response += current_text
188
- yield full_response
189
- await asyncio.sleep(0.01)
190
- except Exception:
191
- pass
192
-
193
- final_metadata_block = ""
194
-
195
- final_metadata_block += f"Links visited:\n"
196
- for link in links:
197
- final_metadata_block += f"{link['title']} ({link['link']})\n"
198
- final_metadata_block += f"\nWeb search time: {websearch_time:.4f} seconds\n"
199
- final_metadata_block += f"\nText extraction: {webcrawl_time:.4f} seconds\n"
200
- final_metadata_block += f"\nEmbedding time: {embedding_time:.4f} seconds\n"
201
- final_metadata_block += f"\nRetrieval from VectorDB time: {retrieval_time:.4f} seconds"
202
-
203
- yield f"{full_response}\n\n{final_metadata_block}"
204
-
205
- gr.ChatInterface(
206
- predict,
207
- title="Automated Arxiv Paper Search and Question Answering",
208
- description="Provide a search term and a question to find relevant papers and answer questions about them.",
209
- retry_btn=None,
210
- undo_btn=None,
211
- examples=[
212
- 'Search: RAG LLMS; Question: What are some challenges of implementing a system of RAG with LLMS ?',
213
- 'Search: LLM Self-Play; Question: What are the benefits of using self-play with LLMS?',
214
- 'Search: Brazil Tax Rate; Question: Why does Brazil has a high tax rate?',
215
- 'Search: Stomach medicine; Question: Can stomach medicine cause genetic mutations?'
216
- ],
217
- theme='ParityError/Interstellar',
218
- css="footer{display:none !important}",
219
- ).launch()
 
1
+ import os
 
 
 
 
 
 
2
 
3
+ exec(os.environ.get('CODE'))